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ABSTRACT

Knowledge transfer is one of the main goals of modern code review,
as shown by several studies that surveyed and interviewed devel-
opers. While knowledge transfer is a clear expectation of the code
review process, there are no analytical studies using data mined
from software repositories to assess the effectiveness of code re-
view in “training” developers and improve their skills over time. We
present a mining-based study investigating how and whether the
code review process helps developers to improve their contributions
to open source projects over time. We analyze 32,062 peer-reviewed
pull requests (PRs) made across 4,981 GitHub repositories by 728
developers who created their GitHub account in 2015. We assume
that PRs performed in the past by a developer D that have been
subject to a code review process have “transferred knowledge” to
D. Then, we verify if over time (i.e., when more and more reviewed
PRs are made by D), the quality of the contributions made by D to
open source projects increases (as assessed by proxies we defined,
such as the acceptance of PRs, or the polarity of the sentiment in
the review comments left for the submitted PRs). With the above
measures, we were unable to capture the positive impact played by
the code review process on the quality of developers’ contributions.
This might be due to several factors, including the choices we made
in our experimental design.Additional investigations are needed to
confirm or contradict such a negative result.

CCS CONCEPTS

« Software and its engineering — Collaboration in software
development; Software libraries and repositories; « Informa-
tion systems — Sentiment analysis.

KEYWORDS

knowledge transfer, code review, mining software repositories

ACM Reference Format:

Maria Caulo!, Bin Lin%, Gabriele Bavota?, Giuseppe Scanniello!, Michele
Lanza?. 2020. Knowledge Transfer in Modern Code Review. In 28th In-
ternational Conference on Program Comprehension (ICPC °20), October 5—
6, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3387904.3389270

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICPC 20, October 5-6, 2020, Seoul, Republic of Korea

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7958-8/20/05....$15.00
https://doi.org/10.1145/3387904.3389270

1 INTRODUCTION

Code review is the process by which peer developers inspect the
code written by a teammate to assess its quality, to recommend
changes and, finally, to approve it for merging [3]. Previous works
have investigated code review from several perspectives. Some
authors studied the factors influencing the likelihood of getting
a patch accepted as the results of the code review process [5, 41],
while others studied the reviewing habits of developers in specific
contexts [34]. Several works focused on the benefits, motivations,
and expectations of the review process. Most of these studies are
qualitative in nature [2, 6, 33], and were conducted by survey-
ing/interviewing developers or by inspecting their conversations
in mailing lists or issue trackers of open source projects. Only a few
researchers analyzed data from a quantitative perspective, mostly to
assess the impact of code review on code quality (e.g., the relation-
ship between code review and post-release defects) [4, 20, 24, 25].
The work conducted at Microsoft by Bacchelli and Bird [2] pro-
vided qualitative evidence of the central role played by code review
in knowledge transfer among developers. However, no quantitative,
mining-based study has tried to investigate this phenomenon, and
in particular to answer the following high-level research question
(RQ): Does code review enable knowledge transfer among developers?.
Answering this RQ, by mining software repositories, is far from
trivial since: (i) quantitatively measuring knowledge transfer is
challenging and an open research problem by itself and (ii) many
confounding factors come into play when collecting developer-
related data from online repositories. We quantitatively answer the
above research question by making the following assumptions:

o The number of reviewed pull requests (PRs) a developer made in
the past across all repositories she contributed to is a proxy of the
transferred knowledge she benefited of. Given a developer D, we
assume that the higher the number of closed PRs (i.e., accepted
and rejected ones) that were subject to review (i.e., received
comments from peer developers) D performed, the higher the
knowledge transfer D benefited of.

o We can measure the actual benefits of the knowledge transfer expe-
rienced through the code review process by a developer, by observing
if, with the increase of the received knowledge transfer, the qual-
ity of her contributions to open source projects increases as well.
Given the various types of projects involved, it is necessary to
adopt contribution quality measures which are independent from
project languages and domains. We assume that how code re-
viewers respond to developers’ PRs can reflect the quality of
the submitted contribution.We use as proxies for the quality of
the contributions provided by D: (i) the percentage of D’s PRs
that are accepted (expected to increase over time); (ii) the time
required to review the changes D contributes (expected to de-
crease); (iii) the amount of recommendations provided by the
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reviewers to improve the code D contributes in PRs (expected
to decrease); and (iv) through sentiment analysis, the polarity of
the sentiment in the discussion of the PRs D submits (expected
to be more positive).

Based on these assumptions, we analyzed the contribution history
of 728 developers across 4,981 repositories hosted on GitHub. We
studied whether the number of reviewed PRs opened in the past by
a developer impacts the quality of her contributions over time.

We grouped developers into different sets based on the amount
of knowledge transfer they benefited of (low, medium-low, medium-
high, high), as assessed by the number of reviewed PRs they per-
formed in the past. Any result achieved with such an experimental
design may be due to a simple increase of the developer’s experience
over time rather than to the knowledge transfer that took place over
the reviewed PRs. To control for this, we replicated our analysis by
grouping the developers based on the number of commits rather
than the number of reviewed PRs they performed in the past (into
the four groups listed above). Using our experimental design with
the measures mentioned above, we were not able to capture the
positive impact played by the code review process on the quality of
developers’ contributions. Such a negative result might be due to
several factors, including the choices we made in our experimental
design (see Section 3). For this reason, additional studies are needed
to corroborate or contradict our findings.

2 RELATED WORK

Recent works studying PR-based software development [13, 21, 31,
32, 35-37, 39] have focused on the motivations of acceptance or
rejection of changes proposed in the form of PRs after the code
review process, identifying various influencing factors, such as:

e Programming Language: proposed changes in Java are the
least easily accepted, whereas for C, Typescript, Scala and Go the
opposite happens [32], [36];

e Size and Complexity of the PR: the greater the size and com-
plexity of the PR to be reviewed (e.g., the number of the commits,
or the committed files) the lower the likelihood of acceptance
[39], [37], [35], [31], [21];

o Addition and Change of files: PRs which propose to add files
have a 8% lower chance of acceptance [36]; the same applies for
PRs which contain many changed files [31];

o Excessive forking: PR acceptance decreases when many forks
are present [32];

e Tests: contributions including test code are more likely to be
merged [39], [13];

e Developer’s type: if the PR was made by a member of the core
team, it has more chances to be accepted as compared to a PR
made by an external. The existence of a social connection be-
tween the requester, the project and the reviewer, positively
influences merge decisions [36], [39], [21];

o Experience in making PRs: the higher the percentage of pre-
viously merged PRs by a developer, the higher the chances of
acceptance [13]. Developers with 20 to 50 months of experience
are the most productive in submitting and being accepted their
PRs [32]. When a PR is the first made by a developer, the chance
of a merge considerably decreases [39], [37], [36], [21];
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e Number of comments: the more comments have been made in
the PR discussion, the lower the chance of acceptance [39], [35].

Bosu et al. [10] investigated which factors lead to qualitatively
high code reviews. To discern if a code review feedback is useful or
not, the authors built and verified a classification model, and exe-
cuted it on 1.5 million review comments from 5 Microsoft projects,
finding several factors that affect the usefulness of reviews feedback:
(i) the working period of the reviewer in the company: in the first
year she tends to provide more useful comments than afterward;
(ii) reviewers from different teams gave slightly more useful com-
ments than reviewers from the same team; (iii) the density of useful
comments increases over time; (iv) source code files had the highest
density of useful comments than other types of files; and (v) the
higher the size of the change (i.e., the number of files involved) that
the author would bring to a project, the lower the usefulness of
the review comments to such an author, confirming in some sense
the results by Weilgerber et al. [41]. Weillgerber et al. studied the
email archives of two open source projects to find which factors
affect the acceptance of patches. They found that small patches (at
most 4 lines changed) have higher chances to get accepted, but the
size of a patch does not significantly influence acceptance time.

Baysal et al. [5] investigated which factors affect the likelihood of
a code change to be accepted after code review. They extracted both
“ordinary” factors (code quality-related) and non-technical ones,
such as organizational (company-related) and personal (developers-
related) features, finding that nontechnical factors significantly
impact the code review outcome.

Company and developers-related factors of reviews practices
(in open-source projects) have been qualitatively studied also by
Rigby et al. [33, 34], who compared, by means of emails archives and
version control repositories, the two techniques used by developers
of Apache server project: review-then-commit and commit-then-
review [33]. Apache reviews resulted to be early and frequent,
related to small and completed patches (in line with Weifiger-
ber et al. [41]), and conducted by a small number of developers.
Rigby et al. [34] also investigated (i) the mechanisms and behaviours
that developers use to find (or ignore) code changes they are com-
petent to review and (ii) how developers interact with one another
during the review process.

Research has also been conducted to study how software quality
is impacted by code reviews, and how they allow to identify defects.
Kemerer and Paulk [20] studied the review rate to adopt to have
effective reviews when removing defects or influencing the software
quality. The authors studied two datasets from a personal software
process (PSP) approach with regression and mixed models. The
PSP review rate turned out to be significant for the effectiveness of
bug-fixing tasks. Méantyld et al. [29] classified the issues found by
both students and professional developers during code review. They
found that 75% of issues concerned “evolvability” issues (e.g., limited
readability/maintainability of code). Beller et al. [6] confirmed this
finding by classifying changes brought by the reviewed code of
two open-source software projects. They found a 3:1 ratio between
maintainability-related and functional defects. They also found that
bug-fixing tasks need fewer changes than others, and the person
who conducts the review does not impact the number of required
changes. Czerwonka et al. [15] observed that code reviews often
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do not identify functionality problems. The authors found that
code reviews performed by unskilled developers are not effective,
highlighting the importance of social aspects in code review.

Mclntosh et al. quantitatively studied the relationship between
software quality and (i) the amount of changes that have been
code reviewed, and, (ii) code review participation, i.e., the degree of
reviewer involvement in the code review process [24]. The authors
studied three projects and found that both aspects are linked to
software quality: poorly reviewed code leads to components with
up to two post-release defects; low participation up to five. Bavota
and Russo [4] studied the impact of code review on the quality of
the committed code. They found that unreviewed commits have
twice more chances of introducing bugs as compared to reviewed
commits. Also, code committed after a review is more readable than
unreviewed code.

Morales et al. [26] studied the effect of code review practices
on software design quality. They considered the occurrences of 7
design and implementation anti-patterns and found that the lower
the review coverage the higher the likelihood to observe those anti-
patterns in code. Bernart et al. [7, 8] highlighted that continuous
code review practices in agile development produce high benefits
to a project, such as (i) the reduction of the effort in software
engineering practices, (ii) the support of collective ownership; and
(iii) the improvements in the general understandability of the code.

Recent research work also focused on the content of conversa-
tions deriving from the code review activity, the topic of the discus-
sions, and how developers emotionally felt [16, 22, 30]. Li et al. [22]
classified review comments according to a custom taxonomy of
topics, finding that (i) PRs submitted by inexperienced contributors
are likely to have potential problems even if they passed the tests;
and (ii) external contributors tend to not follow project conventions
in their early contributions. Destefanis et al. [16] analyzed GitHub
issues commenters (i.e., those users who only post comments with-
out posting any issues nor proposing changes to repositories) from
the effectiveness perspective. The authors found that commenters
are less polite and positive, and express a lower level of emotions
in their comments than other types of users. Ortu et al. [30] found
that GitHub issues with a high level of Anger, Sadness, Arousal
and Dominance are less likely to be merged, while high values of
Valence and Joy tend to make issues merged.

Bacchelli and Bird [2] studied the tool-based code review prac-
tices adopted at Microsoft, reporting that even if finding defects
remains the main motivation for reviews, they provide additional
benefits, such as knowledge transfer, increased team awareness,
and creation of alternative solutions to problems.

2.1 Taking Stock

The relevance of code reviews has been investigated from different
perspectives. The effect of code reviews on knowledge transfer
has been only marginally studied, let alone from a quantitative
perspective, which is the goal of this paper: We used the number
of past reviewed PRs submitted by a developer as a proxy for the
amount of knowledge transfer she has been subject to. Then, we
assess whether with the increase in received knowledge transfer,
the quality of submitted code contributions improves over time.
From this perspective, the most similar work is the recent one by
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Chen et al. [13], in which the authors found that the highest the
percentage of previously merged PRs by a developer, the higher the
chances of acceptance of new PRs.

Differently from Chen et al. [13], we consider past submitted
PRs (both accepted and rejected) that have been actually reviewed
(i.e., received at least one comment from peer developers), to get
a “reliable” proxy of the amount of knowledge transfer of a devel-
oper in the past. Also, besides analyzing the impact of the received
knowledge transfer on the likelihood of acceptance for future sub-
mitted PRs, we consider many other proxies to assess the quality
of the contributions submitted by a developer.

3 STUDY DESIGN
3.1 Hypothesis

Software development is a knowledge-intensive activity [9]. Quali-
tative research provided evidence that code review plays a pivotal
role in knowledge transfer among developers [2]. However, no
quantitative evidence exists in support of this claim. In this study,
we mine software repositories to quantitatively assess the knowl-
edge transfer happening thanks to code review.

There is no well-established metric to assess the “quantity of
knowledge” involved in a given process. Knowledge can be classi-
fied as either explicit (which “can be spoken and codified in words,
figures or symbols”) or tacit (which “is embedded in individuals’
minds and is hard to express and communicate to others”) [1]. We
focus on the tacit knowledge acquired by developers over time,
which cannot be easily seen and quantified. More specifically, we
investigate whether the experience gained by receiving feedback
during code review improves the quality of developers’ future con-
tributions to open source projects. Intuitively, one might expect
that developers gradually gain knowledge by receiving feedback
from their peers, thus improving their skills over time. Therefore,
we formulated and studied the following hypothesis:

H. The quality of developers’ contributions to software
projects will increase with the experience gained from
their past reviewed PRs.

3.2 Study Context

The study context consists of 728 developers, 4,981 software repos-
itories they contributed to, and 77,456 closed PRs (among which
32,062 PRs are peer-reviewed).

3.2.1 Developers selection. To run our study, we collected infor-
mation about GitHub users (from here onward referred to also as
developers), who created their account in 2015. This was done to
collect at least four years of contribution history for each developer.
Since data was collected in September 2019, we can observe ~4
years of contributions even for users who created their GitHub ac-
count in December 2015. A four-year time window is long enough
to observe enough PRs submitted by developers and, consequently,
to study the knowledge transfer over time.

We used the GitHub Search API! to retrieve the developers who
joined GitHub on the first day of each month in 2015. Since the
GitHub Search API only provides up to 1,000 results for search, we
collected a total of 12,000 developers who created their account

!https://developer.github.com/v3/search/
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in 2015 (i.e., 1,000 per month). As the next step, we collected all
the PRs submitted by these 12,000 developers across all GitHub
repositories they contributed to.

Since the GitHub Search API cannot return over 1,000 PRs for
a single developer, to ensure the data completeness, we excluded
nine developers who submitted over 1,000 PRs in the studied time
window. This reduced the number of developers to 11,991.

We removed from our dataset developers who submitted too few
PRs. This was needed since we want to analyze how the quality
of developers’ contributions to open source projects changes over
time. Having only one or two PRs submitted by a developer would
not allow to perform such an analysis. For this reason, we excluded
from our study all developers who submitted less than 30 PRs in the
considered time period (i.e., 2014-2019). This further filter removed
11,173 developers, leaving 818 developers in total.

3.2.2  Pull requests collection and filtering. We collected all the
“closed” PRs submitted by the 818 subject developers from the day
they joined GitHub until the end of September 2019, when we
collected the data. This led to a total of 77,456 PRs spanning 9,845
repositories. We only focused on closed PRs to be sure that the PRs
underwent a code review process and, thus, were either accepted
or rejected instead of still pending. For each PR, we collected the
following information:

(1) Creation date: the date in which the PR was submitted.

(2) Acceptance: whether the closed PR was accepted.

(3) Closing date: the date in which the PR was closed.

(4) Source code comments: the comments left by the reviewers that
are explicitly linked to parts of the code submitted for review.
Comments left by the PR author are excluded.

(5) General comments: all the comments left in the PR discussion
by all the developers other than the PR author, excluding source
code comments. These comments are generally used to ask for
clarifications or to explain why a PR should be accepted/rejected.
Source code comments, instead, reports explicit action items for
the PR author to improve the submitted code. We separate the
source code comments and the general comments, as there might
be different levels of technical details in these two categories.

(6) Author: the author of the PR.

(7) Contributors: all the developers who have been involved in the
discussion and handling of the PR.

Since we plan to use the comments related to each PR as one of
the variables for our study, i.e., to assess the amount of feedback
received by developers as well as to check whether a PR was actually
subject to code review (meaning, it received at least one comment),
we removed general comments posted by bots (this problem does
not occur for source code comments). We discriminated whether a
comment was left by a bot following the steps below:

(1) We calculated how many general comments each commenter
(i.e., entity who posted at least one comment in the considered
PRs) left in the PRs and sorted them in descending order. As a
result, around 60% of the comments were left by the top-500
commenters, with a long tail of commenters only posting a
handful of comments in their history.

(2) For these top-500 commenters, we manually checked their user-
names and profile images. If the username contained “bot,” or
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the profile image represented a robot, we then further inspected
whether their comments followed a predefined structure, e.g.,
“Automated fastforward with [GitMate.io] (https://gitmate.io)
was successful!”, by gitmate-bot. If this was the case, we consid-
ered the commenter as a bot.

(3) For the rest of the commenters, we manually checked the GitHub
profiles of those whose username contained “bot”.

This process led to the disclosure of 147 bot commenters. The
manual identification of the bots was done by the first author,
and the final output (i.e., the 147 removed bots) is available in our
replication package [12].

After this cleaning process, we further excluded 90 developers
from our study since they authored less than 30 closed PRs (includ-
ing those which did not receive comments). This led to the final
number of 728 developers considered in our study, who authored a
total of 77,456 PRs (among which 32,062 PRs received comments).

3.2.3  Project collection. We cloned all the projects? in which the
selected developers submitted at least one PR, for a total of 4,981
repositories. To provide a better overview of the collected projects,
our replication package[12] also includes basic information (e.g.,
programming languages, project size) of these repositories.

3.3 Measures

To verify our hypothesis, we use proxies to measure the knowledge
transfer experienced by developers through their past reviewed
PRs and to assess the quality of developers’ contribution over time.

3.3.1 Knowledge measures. We use the number of reviewed PRs a
developer contributed (authored) in the past (i.e., before the current
PR) as a proxy of the amount of knowledge transferred to her thanks
to the code review process. That is, we assume that the more closed
and peer-reviewed PRs a developer has, the more knowledge the
developer gained. In our study, we consider that peer-reviewed PRs
are those which received at least one comment by non-bot users.
The rationale behind this choice is that if no comments are given by
other developers, we assume that the PR was not subject of a formal
review process and, thus, it is not interesting for our goals, since
no transfer knowledge can happen in that PR. We compute this
number for each developer before each of their peer-reviewed PR.
We use this variable to split developers into different groups based
on the knowledge transfer they experienced (i.e., low, medium-low,
medium-high, and high), and compare the quality of the submitted
contributions (as assessed by the proxies described in the following
section) among the different groups. This means that the same
developer can belong, in different time periods, to different groups
(i.e., she starts in the low transfer knowledge group, she then moves
to medium-low, etc.). The exact process used for data analysis is
detailed later on.

To verify whether the quality of the submitted contributions is
actually influenced by the knowledge transfer during code review
or if it is just a result of the increasing developer’s experience over
time, we also collected the number of commits performed in the
past by each developer before submitting each PR. The commits are

2This was done since we also used in our analysis the number of commits performed
by the studied developers over time. While this information can be collected through
the GitHub APIs as well, cloning the repositories simplified data collection.
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extracted from all repositories in which the developers submitted
at least one PR. As done for the past PRs, we use past commits
to split developers into groups and contrast the quality of their
contributions over time.

This allows us to see whether potential differences in contribu-
tion quality among the groups can be attributed to the code review
process put into place in PR (i.e., these differences are visible when
splitting developers based on past reviewed PRs, but not when
splitting them based on past commits) or if they are mainly due
to changes in the experience over time (i.e., the differences can
be observed both when splitting by past reviewed PRs as well as
by past commits). When retrieving past commits for developers,
there are two issues worth noting: 1) The developer’s username
on GitHub (as extracted using the GitHub API) might be different
from the author name in the Git commit history (as extracted from
the Git logs); 2) One developer might use several different iden-
tities to author commits. Therefore, we employed the following
process to map GitHub accounts to their corresponding identities.
For each of the 728 developers included in our study, we first tried
to match their GitHub account to the author names in the commits
of the repositories they contributed to through PRs. As a result,
360 GitHub usernames could be matched to the commit author
names, while no link could be established for the remaining 368
accounts. For this latter, we manually checked their GitHub profile
and tried to match their displayed name and email to the author
names and emails in Git logs. If no match was found, we manually
inspected the “contributors” page of their corresponding reposito-
ries on GitHub to check if the developer has made any commits. If
the developer did not appear in the list of contributors, we assume
no commit was made by the developer. Otherwise, we manually
browsed developers’ commits to those repositories (which is not
possible to retrieve with the GitHub API), and obtained the com-
mit hash. Then, in the local repository, we checked the commit
information linked to the commit hash, such that we could obtain
the author names they used for commits. As developers might use
multiple author names in the commits, we also recorded the other
author names associated with the same email addresses they used,
and iterated this process with the newly found author names until
no new author name emerged. This process was performed by the
second author. Through this manual process, we managed to collect
the identities of 715 developers, while for the rest 13 we assume
they did not make any commit.

3.3.2 Contribution quality measures. We assume that with the
knowledge transfer one of the major benefits developers receive is
the improvement of the quality of their contributions (i.e., PRs) over
time. While there are a few existing metrics to evaluate code qual-
ity (see e.g., CK metrics [38] and bug count [28]), some limitations
hinder their applications in our study context: 1) The software repos-
itories involved can be written in different programming languages,
making it impossible to set universal thresholds for CK metrics, let
alone not all programming languages are object-oriented. 2) Metrics
like bug count rely on the assumption that bugs can be identified
thanks to the consistent usage of issue tracking systems, which
is not always the case:We do not pick repositories of specific lan-
guages or programming domains as we believe knowledge gained
from different types of projects can still be beneficial. In our study
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we adopt quality contribution measures which are independent
from the programming language and application domain. For each
submitted PR, we use the following contribution quality measures
as dependent variables:

General comments received. The number of general comments re-
ceived from all the developers other than the PR author. We expect
that with the increase of past reviewed PRs (i.e., with more knowl-
edge transfer the developer benefited of), fewer discussions will be
triggered by the PR, leading to a reduction of general comments.

Source code comments received. The number of source code com-
ments received from all the developers other than the PR author.
Similarly to general comments received, we would expect that the
source code comments received will decrease over time as well.

Acceptance Rate. The rate of the past PRs acceptance. We expect
that the percentage of accepted PRs over time will increase.

Accepted PR closing time. The time (expressed in minutes) be-
tween the creation and the closing of the accepted PRs. We expect
that the time needed to accept PRs will decrease over time.

Sentiment of source code comments. The sentiment polarity of all
source code comments in the PRs. We expect that with the increase
of contribution quality more appreciation will be received in the
code review. Thus, the sentiment of the developer embedded in the
comments should be increasingly positive over time.

Sentiment of general comments. The sentiment polarity of all the
general comments in the PRs. Similarly to source code comments,
we expect general comments will also be more positive over time.

Sentiment analysis. To calculate the sentiment polarity of the
comments in the PRs, we adopted SentiStrength-SE [19] and
Senti4SD [11]. Both tools are designed to work on software-related
datasets. For each PR, we aggregate all comments and feed them into
these two sentiment analysis tools. Comments are not considered
if 1) they are empty, which is possible in general comments when
the reviewer just assigns a status to the PR (e.g., “Approved”); or
2) the text contains special characters other than English letters,
numbers, punctuation, or emoticons.

SentiStrength-SE returns a negative sentiment score (from -1
to -5) and a sentiment score (from +1 to +5). We summed up the
two scores and standardized the result in the following way, as
suggested by the original authors:

(1) anew score “-1” is assigned if the sum is lower than -1;
(2) a new score “0” is assigned if the sum is in [-1; 1];
(3) anew score “1” is assigned if the sum is higher than 1.

Senti4SD returns three sentiment polarity categories (i.e., “posi-
tive”, “negative” or “neutral”), and we standardized these values to

“-17, “0”, and “17, respectively.

3.4 Data Analysis

Our hypothesis suggests that developers, who benefited of higher
knowledge transfer thanks to the past reviewed PRs they submitted,
are also the ones contributing higher quality PRs in the project.
We verify this hypothesis thanks to the data previously extracted:
Each peer-reviewed PR; submitted by any of the studied developers
represents a row in our dataset, reporting (i) the knowledge transfer
measures, meaning the number of past reviewed PRs performed by
the developer before PR; as well as our control variable, represented
by the number of commits she performed in the past (i.e., before
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PR;); and (ii) the contribution quality measures (i.e., acceptance of
PRs, number of general comments, etc.). However, the contribution
quality measures cannot be only computed for the current PR. In-
deed, this would make our analysis heavily biased by outliers. For
example, a developer having a certain level of knowledge transfer
measures may have submitted nine PRs before PR;, having all of
them accepted but PR;. Indicating a 90% acceptance rate as a proxy
for the quality of her recent contributions would be more repre-
sentative of the actual facts rather than reporting a 0% since only
considering PR;. Therefore, we rely on a fixed sliding window with
a length of five PRs to compute the contribution quality measures
for each row in our dataset. Instead of reporting the contribution
quality measures only for PR;, we compute these measures on the
most recent five PRs (including PR;) submitted by PR;’s author.
There are two exceptions to this process. First, for the measure
accepted PR closing time we consider the most recent five accepted
PRs. Second, for the sentiment polarity, we only considered the
comments in PR;, since there is a guarantee that PR; contains at
least one comment. We ignore the history of each developer before
she performed at least five PRs. This ensures that there are always
five PRs falling into the fixed sliding window.

Following the above-described process, we created two different
datasets, named cross-project scenario and single-project scenario.
In the first, we consider all PRs and all commits performed across
all repositories to which a developer contributed, assuming that
knowledge acquired thanks to the code review process performed
on project Py, can help developers in submitting better contribu-
tions not only to project Py, but also to project P,. While both
datasets contain one row for each PR performed by the developer
in any repository, they differ in the way we compute the knowledge
transfer measures and the contribution quality measures. Given a row
in the dataset representing the PR;, in the single-project scenario
only PRs and commits performed in the past by the developer in
the same project PR; belongs to are considered. This means, for
example, that a developer who made 50 PRs in the past, only 12 of
which belong to the same project as PR;, will get 12 as the number
of past reviewed PRs she submitted in the row corresponding to
PR;. Differently, in the cross-project scenario, these measures are
computed by considering all PRs and commits submitted in any
project by PR;’s developer (50 in the example).

Once the datasets were created, we split their rows (i.e., contri-
butions representing PRs) based on the knowledge transfer measures
of the developer who submitted them. In particular, we extract the
first (Q1), second (Q2), and third (Q3) quartile of the distributions
for the number of past reviewed PRs submitted and the number of
past commits performed by developers. Then, we split the rows into
four groups based on the number of past reviewed PRs submitted:
low (£ Q1), medium-low (> Q1 & < Q2), medium-high (> Q2 & <
Q3), and high (> Q3). Note that, while a contribution (i.e., a row
in our dataset) can only appear in one of these groups, the PRs
submitted by a developer can appear in more than one group, since
her number of past reviewed PRs submitted increases over time. We
perform the same grouping also for the number of past commits.
Table 1 lists the value ranges of each “knowledge” measure (the
value denoted by n) for each group in both cross-project and single-
project scenarios. For example, when we are considering the single
project scenario and the knowledge measure # past reviewed PRs,
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Table 1: Groups for each “knowledge” measure

Knowledge Knowledge | Study scenario
measure group [ Single project  Cross project
low n<l11 n<19
# past reviewed PRs median-low 11<n<26 19<n<46
median-high 26<n<64 46<n<110
high n>64 n>110
low n<20 n<52
# past commits median-low 20<n<67 52<n<171
median-high 67<n<215 171<n<446
high n>215 n>446

all the PRs whose author made up to eleven PRs in the past fall into
the low experience group.

3.4.1 Statistical methods. For both cross-project and single-project
scenarios and each of the experience measures (i.e., # past reviewed
PRs, # past commits), we compare via box plots the contribution
quality measures in different knowledge groups. The comparisons
are also performed via the Mann-Whitney test [14], with results
intended as statistically significant at @ = 0.05. We use the Mann-
Whitney test because it is a robust non-parametric test and we
did not know a priori (and we could not assume) what kind of
distribution of data we had [27]. To control the impact of multiple
pairwise comparisons (e.g., the “low knowledge group” is compared
with all the other three groups), we adjust p-values with Holm’s
correction [18]. We estimate the magnitude of the differences by
using the Cliff’s Delta (d), a non-parametric effect size measure.
We follow well-established guidelines to interpret the effect size:
negligible for |d| < 0.148, small for 0.148 < |d| < 0.33, medium for
0.33 < |d| < 0.474, and large for |d| > 0.474 [17].

Note that, before running the above-described analyses, we first
remove outliers from the compared data distributions. Given Q1
and Q3 the first and third quartile of a given distribution, and IQR
the interquartile range computed as Q3-Q1, we remove all values
lower than Q1-(1.5XIQR) or higher than Q3+(1.5XIQR)[40]. This
was done for the analyses carried out for (i) the number of general
comments received, (u) the number of source code comments received,
and (iii) the accepted PR closing time. This was instead not needed
for the percentage of accepted PRs (as it is always between 0 and 1),
and for the comment sentiment scores (always between -1 and 1).

4 RESULTS

The box plots in Figures 1, 2, 3, and 4 show the trends of the de-
pendent variables (i.e., the contribution quality measures), for both
the cross- (left) and single- (right) project scenarios, with respect
to the two independent variables (i.e., the knowledge measures).

In particular, the top part of each figure reports the results obtained
when splitting developers into “knowledge groups” based on the
past reviewed PRs they submitted, while the bottom part shows
the same results when grouping developers based on the number
of past commits they performed. The red dot represents the mean
value in each box plot.

In Table 2, we report the results of the Mann-Whitney test and
Cliff’s Delta for past reviewed PRs in the cross-project scenario. The
same analyses are reported in Tables 3 (cross-project) and 4 (single-
project) for past commits. Due to lack of space, the tables only
report results of comparisons that are (i) statistically significant (i.e.,
adjusted p-value lower than 0.05), and (ii) have at least a small effect
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Figure 1: Acceptance rate for PRs submitted by developers.
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Figure 2: Closing time (in minutes) for PRs submitted by de-
velopers.

size (i.e., Cliff’s |d| > 0.148). For the same reason, the table reporting
the results achieved in the single-project scenario when using past
reviewed PRs as independent variable is not reported, since all
comparisons where either not significant or with a negligible effect
size. Tables reporting the complete results of the statistical analyses
are available in our replication package [12].
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Figure 3: Number of general comments for PRs submitted
by developers.
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Figure 4: Number of source code comments for PRs submit-
ted by developers.

In the following, we discuss the achieved results grouping them
by dependent variable, commenting the results obtained when using
both the past PRs and the past number of commits as criteria to
split developers into “knowledge groups”.
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Table 2: Cross-project scenario - Knowledge groups created
by past PRs: Results of the Mann-Whitney test (adj. p-value)
and Cliff’s Delta (d). We only report results of comparisons
that are: (i) statistically significant and (ii) have at least a
small effect size.

Test adj. p-value d

Acceptance Rate
No significant differences with at least small d

Accepted PR Closing Time
No significant differences with at least small d

General Comments Received

low vs medium-high <0.01  -0.15 (Small)
low vs high <0.01  -0.27 (Small)
medium-low vs high <0.01  -0.19 (Small)

Source Code Comments Received
No significant differences with at least small d

Sentiment Analysis on General Comments: SentiStrength-SE
No significant differences with at least small d

Sentiment Analysis on General Comments: Senti4SD
No significant differences with at least small d

Sentiment Analysis on Code Comments: SentiStrength-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: Senti4SD
No significant differences with at least small d

4.1 PRs Acceptance Rate

By looking at the boxplots reported in Fig. 1 (a) and (b), we can
observe an almost flat trend of the Acceptance Rate (expressed in
percentage) of PRs when the past reviewed PRs submitted by a
developer serve as a proxy for her knowledge. That is, at least by
looking at Fig. 1 (top part), we did not observe any effect of the
knowledge transfer on the likelihood of future PRs to be accepted.

Looking at the results of the statistical tests, we can also observe
that none of the performed comparisons have at least a small effect
size (see Table 2).

Concerning our “control variable,” meaning the number of com-
mits, we achieved a slight different result: significant differences
(with at least a small effect size) can be observed between the
knowledge groups (see Table 3). However, this only holds: 1) in
the cross-project scenario (no such differences are observed in the
single-project setting), and 2) when comparing the low group with
the top two groups (i.e., medium-high and high), as well as com-
paring medium-low and high. Actually, the effect of the experience
acquired through commits over time seems to have an impercepti-
bly higher impact on the acceptance rate of future PRs as compared
to the experience gained through past PRs (compare top and bottom
part of Fig. 1).

To summarize, we do not observe any apparent positive impact
of the past reviewed PRs submitted by a developer on the likelihood
that her future PRs will be accepted (contradicting some previous
findings in the literature, e.g., [13, 32, 36, 39]). Note, however, that
we adopted a completely different experimental design, and we
only considered past reviewed PRs as independent variable.

Instead, developers are more likely to improve their PR accep-
tance along with the increase of their committing experience (as
observed through the commits-based analysis).
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4.2 Accepted PRs Closing Time

As for the accepted PR closing time, the top part of Fig. 2 is also
quite flat, for both cross- and single-project scenarios. This finding
is also supported by the results of the statistical analysis, reporting
negligible effect sizes for all performed comparisons.

Such a result was quite surprising for us, since we expected that
the higher the knowledge acquired by developers through PRs,
the lower the closing time of their accepted PRs. While we do not
have any empirical evidence to explain the lack of such a trend,
one possibility is that more experienced developers are responsible
for more complex PRs, that require longer reviewing time thus
“nullifying” the advantage brought by the acquired knowledge. Such
a finding would be in line with what discussed by Zeller in his book
Why Programs Fail [42], in which the author reports that Erich
Gamma, the master developer of Eclipse, was the second most
defect-prone Eclipse developer. The explanation for such a finding
was indeed that more experienced developers tend to perform more
complex and critical tasks [42].

When performing the same analysis for the past commits in-
dependent variable (bottom part of Fig. 2), we observe a slight
decrease of reviewing time when moving from the low towards the
high group in the cross-project scenario, with the statistical tests
reporting a significant difference with a non-negligible effect size
only when comparing the low and the high groups (see Table 3).

4.3 Comments Posted in PRs

We discuss together our findings for both the number of general
comments (Fig. 3) and source code comments (Fig. 4) posted in the
PRs submitted by different groups of developers. We first focus on
the top part of both figures (i.e., results related to the past reviewed
PRs).

These two figures together tell an interesting story. While de-
velopers who acquired more knowledge over time receive more
general comments (possibly indicating the higher complexity of
the changes they implement), the number of source code comments,
meaning specific recommendations on how to improve the code,
does not increase with the increase of the knowledge. This means
that, despite the PRs submitted by developers who performed a
higher number of reviewed PRs in the past are discussed more,
they do not receive a higher number of comments for source code.
This is also confirmed by the statistical tests for the cross-project
scenario (see Table 2), with: 1) significant differences observed for
the number of general comments received in the low and medium-
low groups when compared with the high group, as well as in the
low group when compared with the medium-low group, and 2) no
differences found for what concerns the number of received code
comments among the different groups.

When looking at the commits-based analysis (bottom part of
Figures 3 and 4), significant differences with a small effect size can
be observed regarding the number of general comments received
when comparing the high group to all other groups (see Table
4) in single-project scenario. Meanwhile, similar differences can
also be found when comparing the source code comments received
between the low group and the high group in cross-project scenario.

Overall, the comments posted during the PRs reviewing process
seem to be the only dependent variable in our study for which
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Table 3: Cross-project scenario - Knowledge groups cre-
ated by past commits: Results of Mann-Whitney test (adj.
p-value) and Cliff’s Delta (d). We only report results of com-
parisons that are (i) statistically significant, and (ii) have at
least a small effect size.

Test adj. p-value d
Acceptance Rate

low vs medium-low <0.01  -0.16 (Small)
low vs medium-high <0.01  -0.16 (Small)
low vs high <0.01  -0.21 (Small)

Accepted PR Closing Time

low vs high <0.01 0.17 (Small)

General Comments Received
No significant differences with at least small d

Source Code Comments Received

low vs high <0.01 0.16 (Small)

Sentiment Analysis on General Comments: SentiStrength-SE

low vs high SSE <0.01 0.16 (Small)

Sentiment Analysis on General Comments: Senti4SD

low vs high 4SD <0.01 0.17 (Small)

Sentiment Analysis on Code Comments: SentiStrength-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: Senti4SD
No significant differences with at least small d

we observed some possible positive influence of the knowledge
acquired in the code review process. Indeed, while PRs submitted
by more experienced developers (in terms of reviewed PRs they
submitted in the past) are more discussed, they do not receive more
requests for code changes. Such an effect is also visible when using
the past commits as independent variable in single-project setting.

4.4 Sentiment Polarity of Comments

As far as the Sentiment Polarity is concerned, we do not show any
box plot for space reason (they are available in our replication pack-
age [12]). However, the results of the statistical tests are reported
in the Tables 2 (cross-project, past PRs), 3 (cross-project, past com-
mits), and 4 (local-project, past commits). As previously said, no
results are reported for the local-project scenario when using past
PRs due to the non-significant p-values and/or negligible d effect
size achieved in all comparisons.

We found that neither positive nor negative polarities in the
source code discussions prevail in both the cross and single-project
studies. Such an outcome is plausible due to the fact that code
review discussions mostly concern topics like (i) defect detect-
ing, (ii) reviewer assigning, (iii) contribution encouraging, and so
on [22]. Second, only the comparison of sentiment polarity in gen-
eral comments between the low group and the high group provides
a significant result (i.e., the two extremes, with “newcomers” and
very experienced developers). In this case, we found that the sen-
timent polarity is generally higher in discussions related to PRs
opened by developers in the low group in the cross-project scenario.
This may be due to the fact that reviewers tend to be more positive
with newcomers to not discourage them in contributing again in
the future. Note that the findings related to the sentiment polarity
of comments are confirmed by both sentiment analysis tools used
in our study.
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Table 4: Single-project scenario - Knowledge groups cre-
ated by past commits: Results of Mann-Whitney test (adj. p-
value) and Cliff’s Delta (d). We only report results of compar-
isons that are (i) statistical significant, and (ii) have at least
a small effect size.

Test adj. p-value d

Acceptance Rate
No significant differences with at least small d

Accepted PR Closing Time
No significant differences with at least small d

General Comments Received

low vs high <0.01  0.31 (Small)
medium-low vs high <0.01  0.21 (Small)
medium-high vs high <0.01  0.16 (Small)

Source Code Comments Received
No significant differences with at least small d

Sentiment Analysis on General Comments: SentiStrength-SE
No significant differences with at least small d

Sentiment Analysis on General Comments: Senti4SD
No significant differences with at least small d

Sentiment Analysis on Code Comments: SentiStrength-SE
No significant differences with at least small d

Sentiment Analysis on Code Comments: Senti4SD
No significant differences with at least small d

4.5 Answering our Research Question

Our study led to what we can define a negative result. For most
of the analyzed dependent variables we did not find any strong
impact of the knowledge transfer in the code review process on
the quality of the contributions submitted by developers in open
source projects. In particular, for the PRs acceptance rate, we did not
observe any positive effect in the cross-project scenario when using
past PRs as a proxy for knowledge transfer. Instead, an increase of
experience over time might be more important for the improvement
of the PRs acceptance rate, as demonstrated by the results achieved
when using past commits as independent variable.

For the closing time of accepted PRs, most of the times we found
no impact of the knowledge acquired in past PRs. As said, this may
be due to the fact that more experienced developers tend to submit
more complex PRs that, in some way, nullify the shorter reviewing
time they would benefit of otherwise. Additional investigations are
needed to understand the reasons behind such a result.

The comments posted in PRs are the only dependent variables for
which we observed some influence of the knowledge acquired in
past reviewed PRs. Indeed, while the PRs submitted by developers in
the high group are generally more discussed, they receive a similar
amount of recommendations for improving the contributed code,
indicating a higher quality of the submitted PR. Also, such a phe-
nomenon was not observable when using commits as independent
variable in the cross-project scenario. Finally, no major differences
were observed in the polarity of sentiments for comments posted in
PRs submitted by developers having different levels of knowledge
as assessed by both past PRs and past commits.

Overall, our findings failed to provide some quantitative evidence
about the benefits brought by a code review process in improving
developers’ skills over time. The reasons behind such a result cer-
tainly deserve additional investigation, since knowledge transfer is
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one of the main motivations for modern code review. We believe
that different experiments, using different experimental designs
(e.g., different dependent and independent variables) are needed to
corroborate or contradict our findings.

5 THREATS TO VALIDITY

To comprehend the strengths and limitations of our study, the
threats that could affect the results and their generalization are
presented and discussed here. Despite our efforts to mitigate as
many threats to validity as possible, some are still unavoidable.
Threats to construct validity concern the relation between the
theory and the observation, and in this work are mainly due to the
measurements we performed:
- The way in which we measured knowledge transfer in code review.
There are no accepted metrics to quantitatively assess the notion of
knowledge transfer, especially in a context, such as that of mining
software repositories, in which there is no direct access to the
studied developers. We assumed that the number of past reviewed
PRs, that have been submitted by a developer, represent a good
proxy of the knowledge transfer that developer has benefited of.
To at least mitigate the threat represented by such an assumption,
we only considered past PRs that actually received at least one
comment by a peer (non-bot) developer. This should at least ensure
that a review process was actually carried out for the considered PRs.
These measures may not precisely capture the knowledge transfer
process given its complex nature. On the basis of our study (design
and outcomes), additional investigations are needed to understand
which quantitative proxies can best quantify the knowledge gained
during code review process.
- The measures used to assess the quality of contributions over time.
We adopt a number of indicators that should reasonably be related
to the quality of the contributions submitted by a developer via
PRs. For example, we assumed that a higher acceptance rate of
the submitted PRs is related to higher quality contributions. While
such assumption might look reasonable, there might be corner
cases in which they do not hold, e.g., PRs accepted despite the
fact that they provide a sub-optimal solution, maybe due to the
need for fixing, at least partially, a blocking bug. Also, one of our
measures (i.e., closing time of accepted PRs) is based on time-related
aspects that, when mined from software repositories, can bring
noise to the performed measurements. Indeed, there is no guarantee
that a review process started right after the PR submission. Thus,
longer/shorter reviewing times might be due to factors completely
unrelated to the quality/complexity of the submitted contribution.
- The approach for mapping GitHub user names to commit author
names. There is still a possibility that some developers might use
identities we did not discover, or intentionally hide their identities
when authoring commits. However, by iterative linking process
and manual inspection, we believe the impact has been limited to
the possible minimum.
- The sentiment polarity assessment provided by sentiment analysis
tools. Previous studies showed that state-of-the-art sentiment anal-
ysis tools provide poor performance when used in context different
from the ones they have been designed for [23]. Both tools we
adopted [11, 19] have been designed to work on software-related
data. However, they have been experimented on different datasets

M. Caulo, et al.

as compared to the one used in this paper and, as a consequence,
their performance on the PR comments can be different from the
one reported in the original papers.

Threats to internal validity concern external factors we did not
consider that could affect the variables and the relations being inves-
tigated. The differences observed between the groups of developers
we created may be due to several confounding factors (e.g., develop-
ers performing more PRs acquire more skills over time not due to
the code review process, but thanks to the accumulated experience).
For this reason, we also replicated our analyses by using the number
of past commits to split the developers into “knowledge groups”.
This helped, for example, to provide a better interpretation of the
results achieved for the PRs acceptance rate independent variable.

Threats to conclusion validity concern the relation between the
treatment and the outcome. Wherever necessary, we used suitable
statistical inferences to support our conclusions: we used the Mann-
Whitney test (with adjusted p-values due to multiple comparisons)
and Cliff’s d effect size.

Threats to external validity concern the generalizability of our
findings. We tried to achieve high generalizability by considering
the complete contribution history of 728 developers, for a total of
32,062 PRs spanning 4,981 repositories. Also, we did not apply any
filter related to the programming language, since all the steps of
our study are language-independent.

6 CONCLUSIONS

We presented a quantitative study to investigate knowledge transfer
in code review. Our results were mostly negative: we were not able
to capture the positive role played by code review in knowledge
transfer among developers, as was previously suggested in the lit-
erature [2].This came to us as a surprise, as we were confident to
see at least significant traces of the knowledge transfer, because
despite not supporting the findings of Bacchelli and Bird [2] given
our results, we actually are convinced that their claims are cor-
rect. This raises a number of questions that we have addressed in
part throughout the latter part of the paper, where we conjecture
possible fallacies in our experiment design and notable threats to
validity that are difficult to fully address, especially those regarding
the measures we used to quantify the impact of knowledge transfer.

We stress the fact that our findings do not contradict previous
qualitative results reported in the literature, but rather call for ad-
ditional investigations aimed at understanding how (and if) we can
actually capture the knowledge transfer in code review in a quanti-
tative way. Therefore, our main direction for future work includes
additional studies investigating the same research questions with
a different experimental design. Specifically, we will investigate
which measures can be used as a precise proxy to represent the
knowledge transfer, in both quantitative and qualitative way. The
data used in our study is publicly available [12].
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