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Abstract—Code metrics can be used to assess the internal
quality of software systems, and in particular their adherence
to good design principles. While providing hints about code
quality, metrics are difficult to interpret. Indeed, they take a
code component as input and assess a quality attribute (e.g.,
code readability) by providing a number as output. However, it
might be unclear for developers whether that value should be
considered good or bad for the specific code at hand.

We present RETICULA (REal TIme Code qUaLity
Assessment), a plugin for the IntelliJ IDE to assist developers
in perceiving code quality during software development. RETIC-
ULA compares the quality metrics for a project (or a single class)
under development in the IDE with those of similar open source
systems (classes) previously analyzed. With the visualized results,
developers can gain insights about the quality of their code.

A video illustrating the features of RETICULA can be found
at: https://reticulaplugin.github.io/.

I. INTRODUCTION

Code quality metrics aim at assessing the internal quality
of software systems. For example, in the context of Object-
Oriented Programming (OOP), the Chidamber & Kemerer
(CK) metrics suite [1] provides a set of metrics to assess the
adherence of code to OOP principles (e.g., high class cohesion).

While quality metrics can provide precious hints about
code quality, they rarely lead to improvement actions when
used in isolation. This is mainly due to the fact that quality
metrics are difficult to interpret. Indeed, they take a code
component as input and assess a quality attribute by providing
a number as output. For example, the Weighted Methods per
Class (WMC) metric [1] aims at assessing the complexity of
a given class and it is computed as the sum of the McCabe’s
cyclomatic complexity [2] of its methods. The WMC provides
an unbounded positive integer as output: The higher the WMC,
the higher the class complexity. However, it is difficult for a
developer to interpret the output of this metric:

Is a WMC of 20 for a class worrying?
To answer this question many authors tried to define

thresholds for code quality metrics aimed at identifying code
components in need of refactoring [3], [4], [5], [6], [7], [8],
[9], [10]. However, it is difficult to identify for a given metric
a single threshold acting as a silver bullet. For example, an
average WMC of 20 can be perfectly fine for classes of a
system implementing a Java parser, while being worrying for
a system implementing UML drawing tools.

Lanza and Marinescu [3] suggested to compare the quality
metrics measured on a project to those of systems written
in the same language. This is one of the ideas behind their
overview pyramid, a simple visualization in which metrics are
normalized over the project’s size, thus allowing a meaningful
comparison among systems of different size.

We build on top of this idea, and present RETICULA (REal
TIme Code qUaLity Assessment), an IntelliJ1 plugin able to (i)
compute on-the-fly code quality metrics for the project under
development and for the specific class opened in the IDE, and
(ii) compare the computed values to those of similar projects
mined from GitHub. With similar we mean projects written
in the same programming language, having similar size and
age, developed by teams of comparable size, and related to a
similar application domain.

RETICULA exploits a knowledge base of ∼300k Java
projects mined from GitHub. For each mined project RETIC-
ULA stores key information to filter projects similar to the
one under development in the IDE (e.g., the project size, its
age, its textual description, etc.). Then, it measures a set of
quality metrics for all Java classes in the project. RETICULA’s
knowledge base is in continuous expansion, and grows at
the rate of ∼6k new projects per day. The RETICULA
plugin exploits this knowledge base and implements effective
visualizations to provide developers with a real-time feedback
about the quality of the code they are writing as compared to
that of similar software projects.

II. RETICULA IN A NUTSHELL

Fig. 1 depicts the RETICULA architecture and the in-
teraction of its components. The dashed arrows represent
dependencies (e.g., 1 ), while the solid ones indicate flows of
information pushed from one component to another (e.g., 2 ).
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Fig. 1. RETICULA architecture

1https://www.jetbrains.com/idea/
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The projects miner finds open source Java projects in GitHub
( 1 in Fig. 1) and saves the URL of their repository in JSON
format 2 . The code analyzer clones the project’s repositories
and analyzes them with code quality metrics 3 .

The results of this analysis are stored in a database 4 ,
representing the RETICULA knowledge base from which
identifying projects similar to the one under development in
the IDE.

When the developer activates the RETICULA plugin in
the IntelliJ IDE 7 , a request is sent to the RETICULA web
service 6 , which is in charge of comparing the quality metrics
of the project and of the Java class currently opened in the IDE
(if any) to those of similar projects/classes already analyzed
and stored in the database 5 . The results of this comparison
are presented to the developer in the IDE through visualizations
and will be updated on the fly while the developer writes code.

A. RETICULA Server Side

1) Projects miner: The projects miner is developed with
Node.js. It exploits the GitHub APIs to mine Java projects.
The miner stores the URL of the repository of each identified
project into a JSON list. Overall, we collected the URLs of
over two million Java projects. Such a list can be updated at
regular intervals by re-running the projects miner.

2) Code analyzer: The code analyzer is developed in Scala.
It starts by cloning on the server the repository of each project
in the JSON list created by the projects miner. For each project
it extracts the information summarized in Table I and stores
it in the database. At a higher level, this information can be
classified into two sets.

The first set contains meta information useful to characterize
the project and that is used in a second step to select from the
RETICULA database the projects similar to the one under
development in the IDE. This includes: (i) its textual description,
extracted from the README.md file used in GitHub repository to
describe the repository2; (ii) the number of developers involved
in the project, as provided by the GitHub APIs; and (iii) the
date at which the repository was created, needed to compute
the age of the project.

The second set of information includes code quality metrics
measured at class-level for the specific repository under analysis.
The quality metrics are measured on the latest project’s
snapshot available at the date of the cloning. The set of metrics
considered in RETICULA is listed in Table I. This includes:
(i) the ELOC—Effective LOC (i.e., lines of code excluding
blank lines and comments)—as size metric; (ii) a subset of the
Chidamber-Kemerer (CK) metrics’ suite [1], measured by using
the CK tool [11]; (iii) two conceptual (textual) metrics aimed
at assessing the Conceptual Cohesion of Classes (C3) [12] and
the Conceptual Coupling Between Classes (CCBC) [13]; (iv)
the code readability metric defined by Buse & Weimer [14],
for which we used the implementation made publicly available
by the authors3; and (v) the comment density, computed as
CLOC/ELOC, where CLOC represents the commented lines.

2See e.g., https://github.com/apache/spark/blob/master/README.md
3http://www.arrestedcomputing.com/readability

TABLE I
INFORMATION STORED IN THE DATABASE BY THE CODE ANALYZER

Column Description

Description Textual description of the project retrieved from
README.md file

DevNumber Number of contributors
CreationDate Tha date in which the GitHub repository has been created

ELOC Effective Lines Of Code: counts the effective lines of
code in a class excluding blank lines and comments

LCOM Lack of COhesion of Methods: a class cohesion metric
based on the sharing of local instance variables by the
methods of the class. Lower values are preferred (i.e.,
higher cohesion).

CBO Coupling Between Object classes: measures the depen-
dencies a class has (a proxy for how hard it is to reuse the
class). Lower values are preferred (i.e., lower coupling).

WMC Weighted Methods per Class: measures the complexity
of a class as the sum of the cyclomatic complexity [2]
of its methods. Lower values are preferred (i.e., lower
complexity).

C3 Conceptual Cohesion of Classes: measures how well the
methods in a class are conceptually related. It is computed
as the average textual similarity between the pairs of
methods in a class. Higher values are preferred (i.e., higher
cohesion).

CCBC Conceptual Coupling Between Classes: measures the
coupling between the classes of the system by exploiting
their textual content. It is computed as the average textual
similarity between a class and all the other classes in the
system. Lower values are preferred (i.e., lower coupling).

CR Code Readability: measures how readable a piece of code
is by exploiting a set of features such as the code nesting
level, the average length of statements, etc. Higher values
are preferred (i.e., higher readability).

CD Comment Density: measures the density of comments in
source code.

Due to space limitations, we provide a short description of
the used metrics in Table I. Details about their computation
are available in the previously referenced papers.

The computed information in stored in the RETICULA
database. The quality metrics are stored for each class in the
analyzed project. At the date of writing, the RETICULA
database includes information about ∼300k projects for a total
of ∼15M classes. The metric values stored are expected to
update from time to time.

3) Web service: When the developer activates the RETIC-
ULA plugin, a request is sent to the web service, a Java HTTP
server acting as proxy between the plugin and the database.
The web service receives from the plugin a request including:

1) Characteristics of the project under development, including
its ELOC, a textual description, its age, and the number
of developers working on it.

2) The value of the considered quality metrics (see Table I)
measured for the whole project under development in the
IDE. Each metric is aggregated at project level by using
the average of its values measured across all classes of
the project. Future work will be devoted to implement
other forms of aggregation (e.g., median).
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3) The value of the considered metrics for the specific class
under development in the IDE (i.e., the one having the
focus in the IDE at the time of the request).

Using this information, the web service retrieves from the
database projects similar to the one under development. What
similar means here can be customized by the developer using
the plugin (Section II-B). In particular, the developer can
specify zero or more of the following criteria to be used in the
identification of projects similar to the one under development
in the IDE (from now on P )4:

The project’s size. Given S ELOC as P ’s size, a project in the
database is considered similar to P if its size is S± (S× δ%),
where the parameter δ can be set in the IDE by the developer
(Section II-B). The default value for δ is 30%, meaning that
a project in the database is considered similar to P if its size
does not differ of more than 30% from P .

The project’s age. Given A months as the P ’s age, a project
in the database is considered similar to it if its age is A ±
(A× δ%).

The size of the team developing the project. Given T the
number of P ’s contributors, a project in the database is
considered similar to P if it is developed by T ± (T × δ%)
contributors.

The project’s description. We compute the textual similarity
between the description of each project in the database as mined
from the README.md file and that of the project description
provided for P by the developer (see Section II-B). The idea
is that projects using the same terms in their description are
more likely to implement similar features and/or be related to
the same context. The textual similarity is computed by using
Information Retrieval (IR) techniques, and in particular the
Lucene5 implementation of the Vector Space Model (VSM)
[15]. We apply pre-processing to the text representing the
project descriptions to remove English stop words and to stem
words to their root form. As it often happens when using IR
techniques, it is difficult to establish a similarity threshold
to discriminate between projects in the database that should
be considered similar to P and those that, instead, should be
discarded when this similarity criterion is activated by the
developer. Given the high number of projects in our database,
we decided to extract from the database only the top 1% of
the projects having the highest description similarity when this
similarity criterion is selected6

Once the web service has retrieved the list of similar
projects, it collects information about their quality from the
database. Quality metrics at project-level—again, computed by
aggregating through average the quality metrics for each class
of the project—are compared to the P ’s metrics provided in the
request, returning to the plugin for each metric the percentage
of similar projects in the database having worse value for that
metric (e.g., lower class cohesion) as compared to P .

4If no criterion is selected, all projects in the database are considered as
similar to the one under development.

5https://lucene.apache.org/core/
6This means that with ∼300k projects in our database, the top ∼3k will be

used as term of comparison for the quality of the project under development.

Quality metrics at class-level for the extracted similar
projects are used as term of comparison for the class C under
development.

The web service provides to the RETICULA plugin, for
each metric, the percentage of classes in the similar projects
having worse value (e.g., higher complexity) for that metric.
Note that, besides the selection criteria applied to identify
similar projects, the developer can also set an additional filter
to only consider in the class-level comparison classes from the
similar projects having a size (ELOC) similar to C. In this
case, given S ELOC as the C’s size, only classes having a
size of S ± (S × δ%) are considered in the comparison.

B. RETICULA Client Side

To use RETICULA in IntelliJ the developer only needs
to install the plugin and restart the IDE. The client side of
RETICULA consists of three main components. First is the
metrics calculator settings panel shown in Fig. 2 through which
the developer can customize RETICULA’s behavior.

Fig. 2. Metrics calculator settings panel

In the top part of the panel 1 the developer can select
thorough checkboxes which of the seven metrics supported
by our plugin she would like to compute. By hovering over
a metric’s acronym (e.g., CBO) its full name is shown (e.g.,
Coupling Between Object classes).

In the second 2 part of the panel, the developer can
customize the behaviour of the plugin for what concerns (i)
the frequency with which RETICULA will update the value
of the quality metrics for both the project and the class under
development, and (ii) the value for the δ parameter previously
described (see Section II-A3). As for the frequency, the metrics
are recomputed every X seconds or every Y code tokens
added/modified/deleted by the developer. It is sufficient that
one of the two conditions is met to trigger the re-computation
of the quality metrics.
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The “Project Information” part 3 allows the developer to
provide information about the project she is working on in
the IDE. As previously explained, this information is used by
RETICULA to identify similar projects in the database.

Finally, the developer can specify the address of the
RETICULA web service 4 , currently hosted on a server
at our University (anonymized).

The second component allows the user to select the criteria
to apply for the identification of similar projects/classes from
the RETICULA database (Fig. 3). As previously explained,
the criteria are related to the project’s size, age, description,
and number of contributors and to the class’s size.

Fig. 3. Criteria used to find similar software projects

Finally, the results of the code quality metrics comparison are
shown in two spider plots (Fig. 4) depicting the quality of the
project in the IDE (top part) and of the class under development
(bottom part) as compared to similar projects/classes identified
by using the criteria selected in Fig. 3.

The value on each metric axis indicates the percentage
of projects (classes) having worse value for that metric as
compared to the project (class) under development. The closer
the point to the external edge of the plot, the better the value
for that metric. In the example shown in Fig. 4 we can see that
the project exhibits good values for the conceptual cohesion
of classes (C3), while the coupling (captured by CBO and
CCBC) should be improved. The spider plots are continuously
updated to reflect changes in code quality while the developer
is working on code.

III. RETICULA IN ACTION

In this section we describe a scenario on a real open source
project named Dungeon7 to illustrate how RETICULA works.
Dungeon is a text-based open-world role playing game. The
scenario we describe in the following is inspired by the commit
5c16253 performed by the Dungeon’s developers.

A developer working on Dungeon wants to investigate how
good the quality of CreatureFactory, one of the Dungeon’s
classes, is. The developer installs RETICULA and opens the
CreatureFactory class. Since Dungeon is not a very large
project, the developer only wants to compare its quality with
that of projects having similar size. Therefore, she checks the
“Size” criterion in the RETICULA view. In a few seconds,
RETICULA presents the results as depicted in Fig. 5(a).

7https://github.com/mafagafogigante/dungeon

Fig. 4. Visualization of code quality metrics

(a) Before the refactoring (b) After the refactoring

Fig. 5. Code quality view before and after refactoring

The results show the good overall code quality of Dungeon
as compared to projects of similar size, even if with a limited
comment density (CD).

Concerning the CreatureFactory class, its quality seems
to be suboptimal in terms of cohesion (LCOM) and complexity
(WMC). The LCOM is better than only ∼20% of classes
having a comparable size in similar projects.

545



This suggests that the methods in this class are not strongly
related. Thus, the developer decides to extract some methods in
a newly created class named JsonCreaturePresetFactory

(i.e., she applies extract class refactoring). RETICULA updates
on the fly the quality metrics values for CreatureFactory

as depicted in Fig. 5(b), showing a strong improvement in the
LCOM metric, that is now better than ∼50% of similar classes.
Clearly, the changes implemented to the single class only had
a minor impact in the project-level plot.

IV. RELATED WORK

Lanza and Marinescu [3] present techniques to grasp a
basic understanding of the code quality of a given system
using software metrics. Among the proposed techniques, the
overview pyramid is the most relevant for our work, which
compares the quality of systems written in the same language.
RETICULA builds on top of that idea, taking advantage of
the millions of open source projects available nowadays and by
providing customizable criteria to select the set of projects with
which to compare the quality of the code under development.

Many researchers have investigated how to define alarming
thresholds for quality metrics. Yoon et al. [4] propose to
use k-means to automatically detect outlier metric values.
Shatnawi et al. [5] studied three releases of Eclipse and
identified thresholds for several object-oriented metrics by
exploiting receiver operating characteristic curves. Alves et al.
[6], [7] firstly empirically determine metric thresholds from
measurement data for different systems. Then, they aggregate
individual metrics into a n-point rating scale, providing to
developers an intuitive result about how good the code quality
is. Ferreira et al. [9] study a large collection of open source
Java programs, and identify thresholds for six object-oriented
metrics. Herbold et al. [8] propose a data-drive approach to fix
existing software metric values. Instead of traditional thresholds,
Oliveira et al. [10] propose the concept of “relative thresholds”
assuming that a system is in a good state as long as most code
entities meet certain requirements, in spite of a few outliers.

The goal of RETICULA is similar to the one of the
approaches discussed above: simplify the interpretation of
quality metrics. However, we adopt a different approach that
does not require the definition of any threshold, but is based
on the comparison of similar projects.

Several tools based on code metrics have also been released
to assess code quality. This includes SonarJava8, Coverity
Scan9, and PMD10. Unlike RETICULA, these tools do not
provide direct and intuitive visualization on code metrics,
and they do not compare the quality of the project under
development with that of similar projects.

V. CONCLUSION AND FUTURE WORK

RETICULA aims to provide real-time feedback on code
quality to developers with the support of visualization, seam-
lessly integrated in IntelliJ IDE.

8https://docs.sonarqube.org/display/PLUG/SonarJava
9https://scan.coverity.com/
10https://pmd.github.io/

It provides customizable metrics calculator and projects’
filters, which enables developers to compare the quality of their
code with that of similar open source projects. RETICULA
can serve as a guidance for developers to continuously monitor
the quality of their code.

As part of our future work, we would like to exploit
the information in the version control system and provide
developers with a time-line based code quality view. In that
way, developers can have a clear idea about how the code
quality is evolving over time. Also, we plan to experiment
whether developers using RETICULA tend to write higher-
quality code thanks to the real-time feedback it provides.
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