
An Empirical Study on the Use of Snapshot Testing

Shun Fujita
Kyoto University
Kyoto, Japan

fujita.shun.88e@st.kyoto-u.ac.jp

Yutaro Kashiwa
NAIST

Nara, Japan
yutaro.kashiwa@is.naist.jp

Bin Lin
Radboud University

Nijimegen, The Netherlands
bin.lin@ru.nl

Hajimu Iida
NAIST

Nara, Japan
iida@itc.naist.jp

Abstract—Testing is one of the most critical processes in
software quality assurance. Developers spend a large portion of
their time writing test code to avoid potential software failures.
In recent years, snapshot testing, which compares snapshots
of UI components to detect unexpected changes, has gained
popularity in front-end development due to the need to reduce
testing efforts. However, it is still unclear how software developers
adopt snapshot testing and maintain them. To facilitate future
work to reveal the potentials of snapshot testing, this paper
presents a preliminary study which examines how developers
use snapshot tests. More specifically, this study investigates 1) the
characteristics of projects adopting snapshot testing, and 2) when
snapshot tests were introduced and how they evolve. Our study
is among the first to understand snapshot testing, providing
valuable insights on its adoption. We also highlight the future
directions to work on.

Index Terms—Snapshot testing, JEST, Test-code, Unit tests,
Empirical study

I. INTRODUCTION

The question of “how to write good tests” has been widely
studied by researchers and practitioners. Over the last few
decades, lots of tools and strategies have been proposed to
guide developers to test software in a systematic way at
different testing levels. More recently, snapshot testing has
gained popularity in front-end development due to the need of
reducing testing effort. Specifically, major companies includ-
ing Amazon, Google, and Microsoft have adopted snapshot
testing [1].

Snapshot testing is a type of output comparison testing
technique that asserts whether the outputs by the current state
of the product remain unchanged. That is, it only detects
differences before and after code changes, and ignores whether
the current state is correct. The aim of snapshot tests differs
from those of unit and functional tests that define the correct
behavior of the products.

Snapshot tests require little time to create because devel-
opers can just take snapshots of UI components when the
current version of the product is considered ideal [2]. The
ideal state will be compared with the future state of UI
components. Given the ability of detecting unexpected changes
in UI, it can be applied in different scenarios. For example,
React components are often shared by multiple UIs, applying
snapshot testing can help ensure no dependents will break.

Currently, many snapshot testing frameworks have
been created for different programming languages,

such as swift-snapshot-testing1 for Swift and
snapshooter2 for .NET. Among these frameworks, JEST
for JavaScript and TypeScript stands out as JavaScript is one
of the most popular web development languages, and JEST is
highly compatible with many popular frameworks including
React, Angular, and Vue.js.

While snapshot testing is widely adopted in practice and the
community is still growing rapidly, researchers have paid little
attention to it. It is thus still unclear how software developers
adopt snapshot tests and evolve them. In this study, our goal
is to understand:

“How do developers make use of snapshot testing along
with other types of testing?”

This study presents an empirical investigation on the use of
snapshot tests, specifically JEST - the most popular testing
framework for JavaScript and TypeScript. We examine the
characteristics of projects using snapshot tests, as well as the
adoption and evolution of snapshot tests.

Our contributions are two-fold. First, we present a new study
to shed light on the characteristics and adoption of snapshot
testing in open-source projects. Second, we provide a new
dataset of projects adopting JEST, which can be used for future
studies by other researchers. We also highlight the directions
worth investigating in the future.

Replication package. To facilitate replication and further
studies, the data used in this study are publicly available on
GitHub repository.3

II. BACKGROUND AND RELATED WORK

A. Snapshot Testing with JEST

A typical snapshot test case takes a snapshot of UI com-
ponents and compares it with a pre-stored snapshot. The
test will fail if the two snapshots do not match, meaning
that there are unexpected changes. With JEST, instead of
rendering graphical UI components, it generates serializable
values for UI components and compares the values rather than
images. The serializable values can be JSON, objects, or DOM
elements (e.g., React components). In the context of JEST, the
term “snapshot” refers to the serializable values.

1https://swisslife-oss.github.io/snapshooter/
2https://github.com/pointfreeco/swift-snapshot-testing
3https://github.com/shun-fujita-hub/AnEmpiricalStudyontheUseofSnapshotTesting

JEST provides two snapshot testing methods (described
below) that use different formats to record the DOM elements.
For both methods, when a test fails, developers can easily
re-generate the snapshot after the fix, without the need of
modifying the test code thanks to the interactive mode of JEST.
The details are described as follows.
toMatchSnapshot(): Figure 1 shows an example snippet

using this method, and Figure 2 depicts an example of
snapshot files generated. toMatchSnapshot() stores
a snapshot under the “__SNAPSHOT__” directory. It
then verifies whether the generated snapshots are the
same as the ones created previously. If the method is
invoked for the first time or the snapshots are deleted,
snapshots are only stored and no verification will be
conducted.

toMatchInlineSnapshot(): This method does not
store snapshots in files but instead passes the serializable
values of the snapshots as an argument, e.g., toMatchIn-
lineSnapshot(“<div>...</div>”). The argument in the
method will be automatically modified by JEST when
developers update snapshots following JEST’s prompt.

In this study, we refer snapshot testing to the two methods
toMatchSnapshot and toMatchInlineSnapshot, as
they are the only two methods used for snapshot testing in
JEST. The other test assertions are treated as unit tests. Also,
we do not distinguish between unit tests and integration tests.

B. Related Work

1) Testing Practice and Evolution: Aniche et al. [3] ob-
served 13 developers to understand how they write tests for
real-world open-source methods and surveyed 72 developers
on their testing practices. The results led to a general frame-
work and a set of strategies which explain how developers
reason about testing.

Spadini et al. [4] analyzed over 2,000 mock usages to iden-
tify practices, rationales, and challenges of mocking objects
for testing Java projects. The results show that mocks often
exist since the creation of test classes and tend to remain
there for the whole lifetime of test classes. Besides, changes
in production code frequently drive the test code to co-evolve.

Tufano et al. [5] studied when test smells happen in source
code and how long they are present. Their results show that
test smells are usually introduced when the test code is created,
and they tend to stay in a system for a long time.

2) Tests and Bugs in JavaScript Projects: Fard et al. [6]
conducted an empirical study on 373 JavaScript projects to
examine their defusion, quality metrics, and limitations. They
found that 40% of client-side projects do not have a test and
even if they do, the quality is moderate to low. Ocariza et al.
[7] studied 317 bug reports of client-side JavaScript projects
and found that most (65%) of bug reports are DOM-related.

Mirshokraie et al. [8] proposed an approach that automat-
ically generates test oracles through a mutation-based algo-
rithm. Their evaluation demonstrates that the approach can find
injected JavaScript and DOM faults with 100% precision, and
70% recall. Their later work [9] proposed a method to generate

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

 const { container } = renderMinimap();
 window.dispatchEvent(new Event('resize'));
 expect(container).toMatchSnapshot();
 });

 it('should position minimap at the right hand side bottom of the table on window scroll', () =>
 const { container } = renderMinimap();
 window.dispatchEvent(new Event('scroll'));
 expect(container).toMatchSnapshot();
 });

 it('should stop slider controller positioning when we move cursor out of the window', () => {
 const { container } = renderMinimap();
 jest.spyOn(window, 'removeEventListener');
 document.documentElement.dispatchEvent(new Event('mouseleave'));
 expect(window.removeEventListener).toHaveBeenCalledWith('mousemove', expect.any(Function));
 expect(container).toMatchSnapshot();
 });

 it('should position slider controller when performed drag operation on it', () => {
 const { container } = renderMinimap();
 const sliderController = container.querySelector('#sliderController') as HTMLDivElement;
 fireEvent.mouseDown(sliderController);
 fireEvent.mouseMove(sliderController);
 expect(sliderController).toHaveStyle('left: 0px');
 expect(container).toMatchSnapshot();
 });

 it('should position slider controller at the extreme end of the slider content when dragged out
 const { container } = renderMinimap();
 const sliderController = container.querySelector('#sliderController') as HTMLDivElement;
 fireEvent.mouseDown(sliderController);
 fireEvent.mouseMove(sliderController, { clientX: 200 });
 expect(sliderController).toHaveStyle('left: 70px');
 expect(container).toMatchSnapshot();
 });

 it('should position slider controller at the correct position when dragged inside slider content
 const { container } = renderMinimap();
 const sliderController = container.querySelector('#sliderController') as HTMLDivElement;

fireEvent.mouseDown(sliderController);

medly-components / packages / core / src / components / Table / Minimap / Minimap.test.tsx Top

111 lines (99 loc) · 4.6 KBCode Blame Raw

All Symbols

toMatchSnapshottoMatchSnapshot

9 References Search

In this file

Show more

Search for this symbol

29 toMatchSnapshot();

45 toMatchSnapshot();

62 toMatchSnapshot();

68 toMatchSnapshot();

74 toMatchSnapshot();

82 toMatchSnapshot();

91 toMatchSnapshot();

100 toMatchSnapshot();

109 toMatchSnapshot();

Fig. 1: Example of snapshot tests using toMatchSnapshot()

… …

… …

Fig. 2: Example of snapshot file made by the test in Figure 1
This snapshot starts from line 763 and ends at line 1014.

unit-test assertions using existing GUI tests and the method
can find 26% more faults than their previous method [8].

Christophe et al. [10] analyzed test code in projects using
Selenium (a web application testing tool) and found that it
takes 11.23 non-Selenium commits (or 4.33 days) on average
before a commit affects a Selenium file.

3) Snapshot tests: While various types of tests including
unit tests, integration tests, and GUI tests have been studied
by researchers [3] [4] [5] [10], only a few of them [2] [11]
have focused on snapshot testing.

Bui and Rocha [11] published a dataset of repositories
using JEST’s snapshot files. They identified JEST adoption
by checking whether the GitHub repository uses the tag of
“jest”. Their data includes attributes from the latest commit of
projects (e.g., the number of stars, issues, snap files, test files).

Cruz et al. [2] conducted a grey literature review in order to
investigate the adoption of snapshot testing in practice, reveal-
ing trade-offs and best practices. They found that snapshots are
simple to create and can prevent regressions while they may
easily become fragile if used improperly.

III. STUDY DESIGN

A. Research Questions

Our study aims to answer the following research questions:
RQ1: What are the characteristics of projects that adopt

snapshot tests? As JEST’s official document4 states, “the aim
of snapshot testing is not to replace existing unit tests, but
to provide additional value and make testing painless.” We
conjecture that projects adopting snapshot testing might have
different testing behaviors. Therefore, we propose this RQ to
understand whether different characteristics can be disclosed
between the projects adopting and not adopting JEST for
snapshot testing.

RQ2: When are snapshot tests introduced and how
do they evolve? Testing is notorious for being a time-
consuming software development process and is tedious work
for developers [12]. Snapshot tests are developed to mitigate
this challenge and are widely used by practitioners. However,
it is still unclear when these snapshot tests are created and
how they are maintained. In this RQ, we aim to understand
how snapshot tests evolve.

B. Data Collection

In our study, we mainly target the projects adopting JEST,
an all-in-one testing framework. JEST is reported to be one of
the most popular testing frameworks in the web development.5

The following subsections introduce steps to collect snapshot
tests in JEST.

1) Identifying projects using JEST: As described in Sec-
tion II-B, a previous study [11] provides a list of JEST
projects. However, we decided to collect repositories that use
JEST ourselves because they only collected repositories with
the tag “jest” and we expect that most projects would not
declare what test framework they employ with GitHub tags.

Instead of using the “jest” tag, we use the following
approach to identify the projects using JEST. We first obtained
the list of non-forked JavaScript or/and TypeScript repositories
with more than 1,000 stars using GitHubSearch [13], which
returned 9,516 repositories. We then cloned all the repositories
and parsed the package.json file to determine whether
JEST is used. Specifically, we check if there is at least one
“jest” command in the “script” section.

2) Identifying snapshot tests and unit tests: After col-
lecting the repositories using JEST, we need to identify
which test methods use snapshot testing. We used Babel
parser,6 a popular AST parser for JavaScript and TypeScript,
to get the AST node of each test method. We used AST
parser as it could easily filter out commented-out methods.
Once the test method node (i.e., the method whose name
starts with test or it) is identified, we further examine
if toMatchSnapshot or toMatchInlineSnapshot is
used in the test method, as they are the only methods provided
by JEST for snapshot testing. Test methods containing at

4https://jestjs.io/docs/snapshot-testing
5https://2022.stateofjs.com/en-US/libraries/testing/
6https://babeljs.io/docs/babel-parser

TABLE I: Dataset summary

repositories # %

JEST repositories 1,487 -
using snapshot tests 569 38.2%

only file snapshots 370 65.0%
only inline snapshots 93 16.3%
both of them 106 18.6%

least one snapshot test assertion (i.e., toMatchSnapshot
or toMatchInlineSnapshot) are considered as snapshot-
tests. The remaining test methods containing only non-
snapshot assertions, such as toBe and toEqual, are con-
sidered as unit-tests.

Dataset Summary: Table I shows the number of reposi-
tories that use JEST framework. We identified 1,487 reposi-
tories using JEST and found that 15.6% of JavaScript or/and
TypeScript projects use JEST test methods (= 1,487/9,516) and
38.3% (= 569/1487) of JEST projects use snapshot tests. Also,
a significant number of projects (18.6%) use inlined-snapshots
in addition to file-snapshots.

Our dataset contains 569 repositories that have over 1000
stars and use snapshot testing. If we apply the same filtering
strategy (> 1000 stars), the previous dataset [11] would have
only nine repositories left. Besides, they identify snapshots by
locating “.snap” files. This approach ignores inlined-snapshots,
which account for 16.3% of snapshot tests according to our
analysis. We believe that our dataset provides a list of projects
which adopt snapshot testing and have a higher quality, which
can be used in future snapshot testing related studies.

C. Analysis

1) RQ1 (characteristics of projects): To answer RQ1,
we grouped the collected repositories into three categories:
repositories using only unit-tests (UT), repositories using only
snapshot-tests (ST), and repositories using both unit-tests and
snapshot-tests (UT+ST). We measured the following metrics
for each project and then compared their median values.

Normalized Number of Test Cases: The number of test
methods per 1,000 lines of production code in each
project. We consider those coding files, which do not
contain “test” in the file names or the names of their
directories, as production code. Kochhar et al. [14] sug-
gested that the number of test cases is weakly correlated
with the number of bugs. Therefore, it would be interest-
ing to inspect the test cases these projects have.

Number of Assertions per Test: The average number of
assertions per test method. This metric is inspired by the
study indicating that a larger number of assertions is cor-
related with a significantly smaller number of faults [15].

We apply the Mann-Whitney U-test to examine whether
there is a statistically significant difference when using dif-
ferent pairs of project groups (e.g., UT vs. ST). Note that we
apply the Bonferroni correction to the tests to prevent increases
in the family-wise error rate (i.e., α = 0.005).

ST UT UT+ST
0

50

100

150

200

250

300

(a) Number of test cases

ST UT UT+ST
0

5

10

15

20

25

(b) Number of test assertions

Fig. 3: Distribution of metrics for each type of project

ST UT UT+ST
0

100

200

300

400

(a) Number of unit test cases

ST UT UT+ST
0

20

40

60

80

100

(b) Number of snapshot test cases

Fig. 4: Distribution of the number of unit and snapshot tests

2) RQ2 (snapshot test introduction and evolution): We
investigate when snapshot-tests were introduced and how they
evolved. Like the previous study by Spadini et al. [4], we
examined when developers introduced snapshot tests after
they created the test code. More specifically, for each test
method in the latest commit, we first identified which commit
introduced them. We then further inspected if the method
was created simultaneously with the file creation. Finally,
we classified them into two types: snapshot-tests introduced
from the file creation and snapshot-tests introduced later. As
for their evolution, we examined the percentage of commits
updating snapshot files out of all the commits after the first
snapshot file was pushed. Also, we studied what kind of files
are likely to be updated with snapshot files (i.e., co-changes).

IV. RESULTS

A. RQ1: What are the characteristics of projects that adopt
snapshot tests?

Figure 3 depicts the distribution of the numbers of test
cases/1k LOCs and numbers of assertions/test method for the
studied projects. After categorizing projects based on the type
of tests, we found 1,029 repositories with only unit tests (UT),
567 repositories with both unit and snapshot tests (UT+ST),
and only 31 repositories with only snapshot tests (ST). Their
median sizes of production code (LOCs) are 3,622, 1,371, and
5,404 for UT, ST, and UT+ST, respectively. This implies that
larger projects tend to use both snapshot and unit tests.

Regarding the number of test cases (normalized by 1K-
LOCs), UT+ST has a statistically significantly larger median
number of test cases than the others: 25.2 (UT+ST) vs. 16.2
(UT) / 7.2 (ST). However, when we look into the number
of unit tests and snapshot tests for each type of projects
(Figure 4a), we observed that the median numbers of unit
tests are almost the same (16.2 in UT, 16.7 in UT+ST), which
implies developers use snapshot tests in addition to unit tests.
Our Mann-Whitney U-test shows a no statistically significant
difference can be found between UT and UT+ST, with a p-
value of 0.23.

When comparing the number of snapshot tests in ST and
UT+ST (Figure 4b), ST has 3.4 times snapshot tests (ST: 7.2,
UT+ST: 2.1) even though the total number of test cases is
smaller (shown in Figure 3a). The projects using snapshot tests
might mitigate testing efforts by using snapshot tests.

As for the number of assertions in Figure 3, projects in UT
and UT+ST groups have a similar number of assertions (UT:
1.62, UT+ST: 1.7). Also, we observed that repositories in ST
have a median of only one assertion in their test methods.

RQ1. Projects using both unit tests and snapshot tests have
1.6 times test cases of projects using only unit tests while the
numbers of unit tests in both groups are almost the same.

Snapshot tests Unit tests

0

0.2

0.4

0.6

0.8

1

Metrics

Snapshot tests

Unit tests

MetricsFig. 5: Percentage of snapshot files created from the beginning
(Note: 2% of repositories cannot be calculated due to their size)

B. RQ2: When are snapshot tests introduced and how do they
evolve?

Figure 5 shows the ratio of snapshot tests and unit tests that
are created at the same time as file creation. We discovered
that about a median of 80.0% of snapshot tests and 76.5% of
unit tests are created at the same time as file creation. The
percentage for snapshot tests is slightly higher than that of
unit tests. It might be because developers may utilize snapshot
tests as a quick/instant testing approach and then add unit
tests to complement snapshot tests and cover the missing part.
For example, we found that unit tests were added on top of
snapshot tests to reach a 100% coverage.7

As for the evolution, we found that a non-negligible number
of commits (8.2%) update the snapshot files. Figure 6 shows
what percentage of files of different types are co-changed with
snapshot files in each project. Due to space limitations, we
only show the top 10 file types that are commonly modified by
studied projects. From the figure, we can see that snapshot files
are often updated along with js, ts, and test.js (test) files. Also,
JSON and MD files are also frequently modified together. In
future work, we plan to further investigate what kind of co-
changes are performed instead of only looking into file types.

RQ2. A non-negligible number of commits (8.2%) update
the snapshot files. Co-changes with snapshots are common,
especially with js, ts, and test.js (test) files.

V. THREATS TO VALIDITY

Internal validity: Our study uses packages.json to
identify repositories using JEST. This file is generated by
popular package managers like NPM and YARN, and other
tools might not produce this file. Thus, we might miss some
repositories using JEST. However, we do not expect the num-
ber to be huge and it equally impacts the different categories
in our analysis.

Construct validity: While checking when snapshot tests
were introduced, we did not consider the case of refactoring.
Being unable to detect refactorings like Rename Method might

7https://github.com/ctrlplusb/react-universally/commit/
3623eae1b18704b90e499a8fbbd5f1dd3e82da1e

js json md lock gitignore yml ts test.js babelrc html

0

0.2

0.4

0.6

0.8

1

Files
js
json
md
lock
gitignore
yml
ts
test.js
babelrc
html

Files

Pe
rc

en
ta

ge
 o

f
co

-c
ha

ng
es

 w
it
h

sn
ap

sh
ot

 f
ile

s

Loading [MathJax]/extensions/MathMenu.js
Fig. 6: Percentage of co-changed files with snapshot files

lead to mistakes in the creation date. However, the issue would
also exist equally in different groups of our analysis. We plan
to integrate refactoring detection tools in the future.

External validity: Our study mainly focuses on JEST. In-
deed, there are several frameworks which support snapshot
testing in different programming languages. It is unclear
whether our observation still holds for other frameworks and
further studies are needed.

VI. FUTURE DIRECTIONS

Our study revealed that projects often use snapshot tests
along with other types of tests. While snapshot testing has
been widely used, it is still unclear to what extent snapshot
testing can benefit developers. In the future, we plan to look
into the following directions.

Efficiency of snapshot tests. In RQ2, we observed that de-
velopers add unit tests to test files containing snapshot tests to
increase coverage. Mockus et al. [16] observed that an increase
in test coverage correlates with a decrease in field-reported
problems. Thus, we plan to investigate (i) whether repositories
using both snapshot tests and unit tests have higher coverage
than those using only unit tests, (ii) what percent of code is
covered by both unit tests and snapshot tests, and (iii) which
tests can help to increase coverage more quickly. However, to
investigate these questions, a lot of effort is needed to run tests
and coverage tools as many projects have their own specific
testing environments and steps. For example, a studied project8

requires preparing specific software installations and running
a pre-test command before testing.

Effectiveness of snapshot tests. Depending on the type
of test (e.g., combination tests and unit tests), the variety
of detected bugs is different. However, the effective cases
for snapshots are not empirically studied. Hence, we plan
to perform manual inspections of bug reports in order to
investigate what bugs can/cannot be detected by snapshots
compared with other tests. Our ultimate goal is to recommend
appropriate test methods to developers, based on the context.

Optimal practice of snapshot testing. We would like to
survey developers to understand of issues they encounter with
snapshot testing and the good practices applied.

8https://github.com/juliomrqz/statusfy/blob/master/package.json

VII. CONCLUSION

We conducted an empirical study on 1,487 projects using
JEST (out of which 569 adopt snapshot testing) to understand
how snapshot testing is used. We observed that (i) projects
using both unit tests and snapshot tests have much more test
cases than projects using only unit tests although they have
similar numbers of unit tests; (ii) A non-negligible number
of commits (8.2%) update the snapshot files, and co-changes
with snapshots occur frequently. Our study shed light on how
snapshot testing is adopted in open-source projects, and the
provided dataset can facilitate relevant future studies.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of JSPS for
the KAKENHI grants (JP21H03416, JP21K17725) and JST
for the PRESTO grant (JPMJPR22P3).

REFERENCES

[1] Meta. https://engineering.fb.com/2022/05/11/open-source/jest-openjs-
foundation/.

[2] V. P. Gazzinelli Cruz, H. Rocha, and M. T. Valente, “Snapshot testing
in practice: Benefits and drawbacks,” Journal of Systems and Software,
vol. 204, p. 111797, 2023.

[3] M. Aniche, C. Treude, and A. Zaidman, “How developers engineer
test cases: An observational study,” IEEE Transactions on Software
Engineering, vol. 48, no. 12, pp. 4925–4946, 2022.

[4] D. Spadini, M. F. Aniche, M. Bruntink, and A. Bacchelli, “Mock objects
for testing java systems - why and how developers use them, and how
they evolve,” Empirical Software Engineering, vol. 24, no. 3, pp. 1461–
1498, 2019.

[5] M. Tufano, F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, A. D.
Lucia, and D. Poshyvanyk, “An empirical investigation into the nature
of test smells,” in Proceedings of the 31st International Conference on
Automated Software Engineering (ASE’16), 2016, pp. 4–15.

[6] A. M. Fard and A. Mesbah, “Javascript: The (un)covered parts,” in
Proceedings of the 2017 International Conference on Software Testing,
Verification and Validation (ICST’17), 2017, pp. 230–240.

[7] F. S. Ocariza Jr., K. Bajaj, K. Pattabiraman, and A. Mesbah, “An
empirical study of client-side javascript bugs,” in Proceedings of the
2013 International Symposium on Empirical Software Engineering and
Measurement (ESEM’13), 2013, pp. 55–64.

[8] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “JSEFT: automated
javascript unit test generation,” in Proceedings of the 8th International
Conference on Software Testing, Verification and Validation (ICST’15),
2015, pp. 1–10.

[9] ——, “Atrina: Inferring unit oracles from GUI test cases,” in Pro-
ceedings of the 2016 International Conference on Software Testing,
Verification and Validation (ICST’16), 2016, pp. 330–340.

[10] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter, “Prevalence
and maintenance of automated functional tests for web applications,” in
Proceedings of the 30th International Conference on Software Mainte-
nance and Evolution (ICSME’14), 2014, pp. 141–150.

[11] E. Bui and H. Rocha, “Snapshot testing dataset,” in Proceedings of
the 20th International Conference on Mining Software Repositories
(MSR’23), 2023, pp. 558–562.

[12] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Soft-
ware developers’ perceptions of productivity,” in Proceedings of the
22nd International Symposium on Foundations of Software Engineering
(FSE’14), 2014, pp. 19–29.

[13] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in Proceedings of the 18th International Conference on
Mining Software Repositories (MSR’21), 2021, pp. 560–564.

[14] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “An empirical study
of adoption of software testing in open source projects,” in Proceedings
of the 13th International Conference on Quality Software, 2013, pp.
103–112.

[15] Y. Zhang and A. Mesbah, “Assertions are strongly correlated with
test suite effectiveness,” in Proceedings of the 2015 Joint Meeting on
Foundations of Software Engineering (FSE’15), 2015, pp. 214–224.

[16] A. Mockus, N. Nagappan, and T. T. Dinh-Trong, “Test coverage and
post-verification defects: A multiple case study,” in Proceedings of the
3rd International Symposium on Empirical Software Engineering and
Measurement (ESEM’09), 2009, pp. 291–301.

