
Revisiting Security Practices for
GitHub Actions Workflows

Jiangnan Huang
Radboud University

Nijmegen, The Netherlands

Bin Lin†
Hangzhou Dianzi University

Hangzhou, China

Abstract—GitHub Actions, a built-in CI/CD service of GitHub
released in 2019, has become one of the most widely adopted tools
among developers for automating software development workflows.
This popularity, however, brings security challenges, as vulnerable
workflows can expose repositories and software supply chains to
significant risks. Existing studies have highlighted several types of
potential security issues. Over the past few years, GitHub has been
constantly promoting better security practices, and developers
have gained experience in using GitHub Actions. Investigating
how developers’ practices for handling GitHub Actions security
have changed over time could offer valuable insights for further
strengthening the security of these workflows. In this study, we
analyzed non-optimal security practices in 18,938 workflows from
5,246 active GitHub repositories. By comparing the prevalence
of issues spotted in two different years (2022 and 2024), we find
that the instances of No Permissions Specified have significantly
reduced as more developers now explicitly define permissions in
their workflows. However, other issues, such as Confidential Data
Disclosure, remain prevalent, underscoring the need for continued
vigilance and further research in this domain.

Index Terms—GitHub Actions, CI/CD, Software Repositories,
Security, Software Vulnerability

I. INTRODUCTION

GitHub [1], one of the largest social coding platforms, hosts
more than 420 million repositories and 100 million developers
by September 2024 [2]. Over the past decade, developers on
GitHub have embraced third-party CI/CD tools (e.g., Travis
CI [3], Jenkins [4]) to streamline workflows such as building,
testing, and deployment [5]. In response, GitHub introduced
GitHub Actions (GHA) [6] in November 2019, a native CI/CD
solution that quickly surpassed other CI/CD tools in popularity
and dominated the market within only 18 months [7]. Similar
to other CI/CD tools, developers can specify automated tasks
in GHA workflows through configuration files. Like traditional
source code, GHA workflows are also developed and adjusted
over the lifespan of a project to meet evolving needs. However,
their capability to modify and control repository content makes
them attractive targets for potential attacks.

Prior studies have been conducted to address security
concerns within GHA workflows. [8]–[10] Koishybayev et al.
[8] first conducted a systematic security analysis of GHA
ecosystem and found security properties that impact workflows
in GHA. Meanwhile, Benedetti et al. [9] identified four types
of security issues in GHA workflows and developed GHAST,

† Corresponding Author.

a security assessment methodology, which was applied to 50
open-source projects, uncovering over 20,000 issues. More
recently, Muralee et al. [10] introduced ARGUS, a framework
using taint analysis to detect command injection issues. This is
the latest large-scale security analysis and used GHA workflows
collected in 2022. Together, these research efforts highlight the
critical security risks associated with GHA workflows.

Due to widespread security concerns, GitHub has been
constantly promoting good security practices for GHA work-
flows [11]. While previous research has introduced security
tools and developers have gained experience with GHA, it
remains unclear whether security practices have improved and
which issues are still prevalent. In this study, we revisit the
security practices for GHA workflows integrating the dataset
by Muralee et al. [10]. While they only focused on potential
command injection issues, we examine multiple types of
security issues. More specifically, we compiled a new dataset
of 18,938 GHA workflows from 5,246 active repositories,
adapted and expanded Benedetti et al.’s GHAST [9] to assess
security issues in both the old (2022) and latest (2024)
versions of these workflows. Understanding the prevalence
of security issues over the years and how developers’ security
practices change can help developers adapt better strategies
to safeguard GHA workflows. Our findings reveal that while
certain types of issues have been improved, overall security
practices remain concerning, with 33,362 issues identified in
the current workflows.

II. STUDY DESIGN

This study aims to investigate the following two research
questions (RQs):

• RQ1 (prevalence): How prevalent are different types
of security issues in GHA workflows? This RQ aims to
provide an overview of the prevalence of various security
issues in GHA, focusing on identifying and understanding
the non-optimal security practices in current workflows.

• RQ2 (mitigation): To what extent are various types of
security issues being mitigated? After two years since the
last major study on security issues in GHA workflows,
this RQ aims to assess whether the security practice has
been improved. By comparing current security issues with
those presented two years ago, we offer insights into how
developers dealt with GHA security and which issues
received the most attention for mitigation.

1



TABLE I: TYPES OF SECURITY VULNERABILITIES IN GHA WORKFLOWS

Vulnerabilities Issue Description
Confidential Data Disclosure Confidential data (e.g., API keys, passwords) in secrets context are not adequately secured in environment

variables, which can lead to exposure in job logs or unintentional transmission to external hosts.

Command Injection Part of inputs from the actor (i.e., pull request’s title) is used directly in the job with github context,
potentially introducing command injection vulnerabilities if the input includes malicious code.

Misconfigurations Issue Description
Unverified Action Version Unpinned Third-party actions from unverified creators are used in the workflow and a) or b):

a) The versions are not specified which can lead to run failures or unexpected behavior with updates.
b) Tags (e.g. “v2”) are used to specified the version which allow attackers to exploit tag-reuse, redirecting
workflows to malicious actions.

No Permissions Specified The permissions key is not specified in the workflow and/or job(s) to adjust the default permissions of
the GITHUB_TOKEN. Specifying permissions helps restrict the access to the minimum necessary level.

TABLE II: SECURITY LEVELS OF THE TRIGGER-EVENTS

Security level E.S. Description

Restricted 1

The attacker must rely on assistance from
a repository owner to trigger the workflow.
e.g., Triggering push requires the attacker to
have maintainer status granted by an owner.

Supervised 2

The attacker must meet specific conditions
to trigger the event. e.g., Triggering pull_
request requires the maintainer to accept
it, thereby starting the workflow.

Unsupervised 3

The attacker needs no permissions from
repository owners and can trigger the work-
flow at any time through external actions.
e.g., Any GitHub user with repository access
can trigger issues.

* E.S.: Exploitability Score.

A. Data Preparation

To answer our RQs, we collected a large dataset of GitHub
repositories via the SEART GitHub Search Engine [12]. To
mitigate common threats in mining software repositories [13],
the following constraints were applied:

• Development activity. We selected projects created before
2023 that were still active (last commit within 1 month)
at data collection to ensure sufficient development history
for studying GHA workflows, excluding forks to avoid
redundant data.

• Popularity. We only selected projects with at least 100
stars and 100 commits, with number of forks over 100,
to avoid including potentially irrelevant toy projects.

We also excluded projects not using GHA workflows. The
final list comprises 19,988 repositories. As we would also like
to understand how security practices change, we integrated
the data from Muralee et al. [10] (ARGUS dataset), which
was collected between November and December 2022. This
dataset covers over 1 million unique repositories and 2.7 million
GHA workflows and is available upon request for research 1.
We adopted the intersection between our data and theirs as

1https://secureci.org/dataset.html

this ensures the repositories containing GHA workflows two
years ago without the need for cloning all the repositories and
checking out previous versions. After merging by workflow
path, we obtained 5,813 unique repositories, encompassing a
total of 24,634 GHA workflows. We retrieve all their current
workflows through the GitHub Rest API [14]. To ensure a fair
comparison of practices over two years, we further excluded
newly generated workflows and those no longer available in
the current repositories. In the end, we obtained 18,938 GHA
workflows from 5,246 repositories.

B. GHA Workflow Security Evaluation

We applied enhanced GitHub Actions Security Tester
(GHAST) to analyze the security vulnerabilities of the collected
GHA workflows for both 2022 and 2024 versions. GHAST is
a publicly available tool by Benedetti et al. [9]. To align
the tool with our study’s objectives, several modifications
were made, including few logic improvements, information
preservation, edge case handling, and bug fixes. The enhanced
version of GHAST detects four types of security issues within
GHA workflows, including two security vulnerabilities and
two misconfigurations. Table I details the categories of these
security issues. Note that the original GHAST detects outdated
actions, identifying whether a new release is available for
third-party action in use. We, instead, detect Unverified Action
Version Unpinned, emphasizing the risks posed by unverified
(detected through cross-check with GitHub Marketplace profiles
as done by Koishybayev et al. [8]), unpinned (i.e., action not
pinned to a full-length commit SHA) third-party actions. We
made this change to the tool as it aligns more closely with
the recommended practice by GitHub [15]. Like GHAST, we
also classify trigger-events into three security levels (listed in
Table II), indicating the complexity an attacker must navigate
to activate specific events and initiate workflows.

C. Replication Package

To support replication studies and future extensions, our
enhanced GHAST tool is available online at https://github.c
om/jiangnanpro/Security-of-GHA-workflow. Due to potential
security concerns, we do not openly publish the dataset used
in the study.

2

https://secureci.org/dataset.html
https://github.com/jiangnanpro/Security-of-GHA-workflow
https://github.com/jiangnanpro/Security-of-GHA-workflow


III. PREVALENCE OF SECURITY ISSUES

To answer RQ1, we analyzed the current version of the
18,938 collected real-world GHA workflows, identifying 33,362
security issues in total, including 2,731 vulnerabilities and
30,631 misconfigurations. Table III (column “# issues 2024”)
shows the distribution of all four types of identified security
issues according to the security level of each affected workflow.

A. Security Vulnerabilities

1) Confidential Data Disclosure: We found 2,617 cases
where the confidential data used with secret context are not
set as an environment variable, enabling jobs to expose those
secrets e.g., by printing in a log output or sending them to an
external host. Among the discovered issues, 52 of them sit in
workflows which can be triggered using unsupervised events,
raising the risk of confidential data leakage.

2) Command Injection: We identified 114 issues that can
expose workflows to command injection risks, of which only
one does not need any granted permission by repository owners
(exploitability score of 3) and 35 are under workflow with
supervised events (exploitability score of 2). These vulnera-
bilities enable attackers to inject malicious inputs, triggering
direct execution within the GHA Runner and compromising
the repository and/or the execution environment.

B. Workflow Misconfigurations

1) Unverified Action Version Unpinned: We identified
16,439 issues attributed to such actions, with 677 of these
in unsupervised workflows. In general, actions from unverified
authors carry greater security risks than those from verified
sources. When using unverified actions, developers are expected
to thoroughly audit the source code to ensure there are no
security threats. However, if actions used are not pinned to
specific SHAs, they remain vulnerable even if tagged as latest
version or left untagged. This vulnerability stems from the
possibility of a malicious update by the unverified creator,
which not only compromises the workflow and its repository,
but also introduces stability concerns.

2) No Permissions Specified: Our findings indicate that
substantial workflows (74.9%, 14,192) omit explicit permission
declarations altogether, relying only on the default permissions
of GITHUB_TOKEN, which could inadvertently grant broader
access than intended. Fig. 1 b) shows that 15.5% (2,944) of
workflows specify permissions only at the workflow level,
rather than assigning them separately for each job. By contrast,
only 9.5% (1,802) of workflows follow security guidelines
and adhere to the principle of least privilege by declaring
permissions at the job level to restrict access effectively [16].

IV. EXPLORING THE MITIGATION OF SECURITY ISSUES

To address RQ2, we compared the security issues of the
18,938 GHA workflows across the 2022 and 2024 versions,
which is detailed in Table III. The numbers in the 2024 versions
that are lower that the ones in 2022 versions are marked with
underlines. Overall, the comparison reveals positive progress,
with the percentage of issue-free workflows increasing from

84.7%
(16036)

9.0%
(1710)

6.3%
(1192)

a) December 2022

74.9%
(14192)

15.5%
(2944)

9.5%
(1802)

b) September 2024

Workflows w/ no permission specified
Workflows w/ permission specified at workflow level
Workflows w/ permission specified at job level

Fig. 1: Application of permission in GHA workflows.

10.2% (1,938) to 17.3% (3,283). Additionally, the total number
of identified security issues dropped a little, from 34,629 to
33,362. Despite these improvements, security issues continue
to be widespread in GHA workflows, highlighting the need for
ongoing attention and mitigation efforts.

A. Trigger-events

Between the 2022 and 2024 versions of the GHA work-
flows, we observe an increase of 93 potentially risky events
(Exploitability score > 1). However, with the total number of
applied events rising from 32,127 to 33,426, the percentage
of risky events has slightly decreased by 1.1%. Overall, no
significant change is observed on the usage of risky trigger-
events. This result is expected, given that the core functionality
of the workflows has largely remained unchanged. As a result,
the trigger-events themselves are likely to remain consistent
over time, reflecting the established practices and preferences
of developers when configuring their workflows.

B. Security Vulnerabilities

As shown in Table III, Confidential Data Disclosure vulner-
abilities have increased by 272 (from 2,345 to 2,617) in the
2024 version compared to 2022. This increase is observed in
workflows with all security levels, indicating a broader exposure
to this vulnerability in current workflows. The number of
workflows affected has also increased by 17. As for Command
Injection, the number of occurrences has increased by 12, with
the number of affected workflows rising by 15.

In general, the analysis does not reveal statistically significant
differences (p-values ≥ 0.05) in the number of security
vulnerabilities between the two workflow versions, indicating
limited progress in mitigating these issues in GHA workflows.
Given the potential to compromise repository integrity and
expose sensitive data, these issues should be prioritized to
capture developers’ attention and encourage proactive remedi-
ation efforts. In our follow-up research, we aim to explore
developers’ perspectives on these vulnerabilities to better
understand barriers to risk mitigation and identify opportunities
for enhancing security practices in GHA workflows.

3



TABLE III: DISTRIBUTION OF SECURITY ISSUES IN GHA WORKFLOWS

Security Issues # issues 2022 # issues 2024 # wfs 2022 # wfs 2024 P-value
Exploitability score 1 2 3 All 1 2 3 All - - -

Confidential Data Disclosure 1584 707 54 2345 1786 779 52 2617 1121 1138 0.355

Command Injection 74 28 0 102 78 35 1 114 86 101 0.523

All Vulnerabilities 1658 735 54 2447 1864 814 53 2731 1159 1185 0.320

Unverified Action Version Unpinned 6236 9121 789 16146 5947 9815 677 16439 7929 7500 0.074

No Permissions Specified 6385 8958 693 16036 5522 8081 589 14192 16036 14192 0.0

All Misconfigurations 12621 18079 1482 32182 11469 17896 1266 30631 16920 15526 0.0

All Issues 14279 18814 1536 34629 13333 18710 1319 33362 17000 15655 0.0

* # wfs: # GHA workflows affected by this issue; P-Value obtained using Wilcoxon’s Signed Ranks Test with the pairs of # issues per workflow (2022 vs. 2024).

C. Workflow Misconfigurations

In terms of misconfigurations, some progress has been
observed. As shown in Table III, although the number of
Unverified Action Version Unpinned has increased by 293
(from 16,146 to 16,439), 429 fewer workflows contain this
issue, suggesting increased awareness and efforts from the
developers to address the misconfiguration. The same trend
applies to permission-related misconfigurations: No permission
specified issues decreased by 1,844 (from 16,036 to 14,192).

Fig. 1 illustrates the use of the permissions key across
workflows, revealing a broader adoption at both workflow and
job level in 2024 compared to 2022. This result indicates the
increased attention to configuration security. However, the best
practices recommend setting permissions at the job level to
follow the least privilege principle [16], indicating the room
for improvement despite the positive progress.

Overall, the comparison of the numbers of misconfigurations
per workflow across two versions results in a statistically
significant difference (p-value < 0.05), which is in line with
our observation.

V. THREATS TO VALIDITY

Threats to internal validity: A key threat to our study
is GHAST’s reliability in detecting security issues in GHA
workflows. While tools like ARGUS specialize in specific
issues, we chose GHAST for its broader coverage. To mitigate
this threat, GHAST has been improved to align with our
research objectives. A manual review of 40 reports generated
by the enhanced GHAST confirmed a 100% true positive rate.
Our future work will incorporate tools like CodeQL [17] and
ARGUS for a more comprehensive security analysis.

Threats to external validity: Another threat is the gener-
alizability of our results due to the selection of studied GHA
workflows. To mitigate this, we selected repositories from
diverse domains with varying popularity and activity levels. In
this study, we only studied open-source projects, and proprietary
software might show different patterns. In the future, we plan
to conduct a systematic and regular analysis of a broader range
of repositories to monitor the evolution of security practices
in GHA workflows.

VI. RELATED WORK

Koishybayev et al. [8] conducted a systematic security
analysis of GHA ecosystem, identifying critical security prop-
erties that impact workflows in GHA and other CI platforms.
Benedetti et al. [9] identified four types of security issues
in GHA workflows and developed a security assessment tool
GHAST. We improved their tool and conducted an more in-
depth analysis of different types of security issues, aligned
to the security practices recommended by GitHub. Moreover,
we studied the security practice change over last two years.
Muralee et al. [10] introduced ARGUS, a framework leveraging
taint analysis to detect command injection issues in GHA.

Delicheh et al. [18] analyzed the JavaScript actions used in
GHA and revealed that over 54% actions containing security
weaknesses. Khatami et al. [19] manually analyzed frequent
change patterns in workflows to identify workflow smells.
Seven types are confirmed with developers through pull
requests. Furthermore, Ayala et al. [20] conducted an empirical
study to measure the usage of GHA workflows and security
policies in 173k popular repositories, highlighting the strong
need for broader adoption of security policies.

VII. CONCLUSIONS AND FUTURE WORKS

Our study provides a comprehensive evaluation of security
practices in GitHub Actions workflows over a two-year period,
highlighting both advancements and persistent security issues
in the CI/CD landscape.

Building on top of this study, our future work aims to engage
with repository owners by sharing the identified security issues
with our advices for improvement, together with a developer
survey. This outreach seeks to capture the diverse awareness
levels and perspectives developers hold on GHA security,
helping to reveal the full landscape of priorities, challenges,
and potential solutions in this area. To date, we have sent
around 40 security reports and received positive feedback from
developers, some of them updating their workflows based
on our recommendations. Furthermore, we will continuously
monitor GHA security practices on a regular basis using the
pipeline developed in this study. This ongoing effort aims to
provide a more comprehensive and dynamic overview of the
evolution of developers’ security practices within GHA.

4



REFERENCES

[1] GitHub, “Github.” [Online]. Available: https://github.com/
[2] ——, “Github about.” [Online]. Available: https://github.com/about
[3] T. CI, “Travis ci.” [Online]. Available: https://www.travis-ci.com/
[4] Jenkins, “Jenkins.” [Online]. Available: https://www.jenkins.io/
[5] P. Rostami Mazrae, T. Mens, M. Golzadeh, and A. Decan, “On the usage,

co-usage and migration of ci/cd tools: A qualitative analysis,” Empirical
Software Engineering, vol. 28, no. 2, p. 52, 2023.

[6] GitHub, “Github actions,” https://github.com/features/actions.
[7] M. Golzadeh, A. Decan, and T. Mens, “On the rise and fall of ci services

in github,” in 2022 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2022, pp. 662–672.

[8] I. Koishybayev, A. Nahapetyan, R. Zachariah, S. Muralee, B. Reaves,
A. Kapravelos, and A. Machiry, “Characterizing the security of github
CI workflows,” in 31st USENIX Security Symposium (USENIX Security
22). Boston, MA: USENIX Association, Aug. 2022, pp. 2747–2763.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity22
/presentation/koishybayev

[9] G. Benedetti, L. Verderame, and A. Merlo, “Automatic security
assessment of github actions workflows,” in Proceedings of the
2022 ACM Workshop on Software Supply Chain Offensive Research
and Ecosystem Defenses, ser. SCORED’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 37–45. [Online].
Available: https://doi.org/10.1145/3560835.3564554

[10] S. Muralee, I. Koishybayev, A. Nahapetyan, G. Tystahl, B. Reaves,
A. Bianchi, W. Enck, A. Kapravelos, and A. Machiry, “ARGUS: A
framework for staged static taint analysis of GitHub workflows and
actions,” in 32nd USENIX Security Symposium (USENIX Security
23). Anaheim, CA: USENIX Association, Aug. 2023, pp. 6983–7000.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity23
/presentation/muralee

[11] GitHub, “Security hardening for github actions,” https://docs.github.com/
en/actions/security-for-github-actions/security-guides/security-hardeni
ng-for-github-actions.

[12] O. Dabic, E. Aghajani, and G. Bavota, “Sampling projects in github for
MSR studies,” in 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021. IEEE, 2021, pp. 560–564.

[13] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of mining
github,” Empirical Softw. Engg., vol. 21, no. 5, p. 2035–2071, Oct. 2016.
[Online]. Available: https://doi.org/10.1007/s10664-015-9393-5

[14] GitHub, “Rest api endpoints for workflows,” https://docs.github.com/en/r
est/actions/workflows?apiVersion=2022-11-28.

[15] ——, “Using third-party actions,” https://docs.github.com/en/actions/s
ecurity-for-github-actions/security-guides/security-hardening-for-githu
b-actions#using-third-party-actions.

[16] ——, “Restricting permissions for tokens,” https://docs.github.com/en/a
ctions/security-for-github-actions/security-guides/automatic-token-aut
hentication#modifying-the-permissions-for-the-github_token.

[17] ——, “Codeql,” https://codeql.github.com/.
[18] H. O. Delicheh, A. Decan, and T. Mens, “Quantifying security issues in

reusable javascript actions in github workflows,” in 21st International
Conference on Mining Software Repositories (MSR ’24), F.R.S.-FNRS -
Fonds de la Recherche Scientifique [BE]. ACM, 15 April 2024.

[19] A. Khatami, C. Willekens, and A. Zaidman, “Catching smells in the act:
A github actions workflow investigation,” in 24th IEEE International
Working Conference on Source Code Analysis and Manipulation (SCAM).
IEEE, 2024.

[20] J. Ayala and J. Garcia, “An empirical study on workflows and secu-
rity policies in popular github repositories,” in 2023 IEEE/ACM 1st
International Workshop on Software Vulnerability (SVM), 2023, pp. 6–9.

5

https://github.com/
https://github.com/about
https://www.travis-ci.com/
https://www.jenkins.io/
https://github.com/features/actions
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
https://www.usenix.org/conference/usenixsecurity22/presentation/koishybayev
https://doi.org/10.1145/3560835.3564554
https://www.usenix.org/conference/usenixsecurity23/presentation/muralee
https://www.usenix.org/conference/usenixsecurity23/presentation/muralee
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions
https://doi.org/10.1007/s10664-015-9393-5
https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28
https://docs.github.com/en/rest/actions/workflows?apiVersion=2022-11-28
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/security-hardening-for-github-actions#using-third-party-actions
https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
https://docs.github.com/en/actions/security-for-github-actions/security-guides/automatic-token-authentication#modifying-the-permissions-for-the-github_token
https://codeql.github.com/

	Introduction
	Study Design
	Data Preparation
	GHA Workflow Security Evaluation
	Replication Package

	Prevalence of Security Issues
	Security Vulnerabilities
	Confidential Data Disclosure
	Command Injection

	Workflow Misconfigurations
	Unverified Action Version Unpinned
	No Permissions Specified


	Exploring the Mitigation of Security Issues
	Trigger-events
	Security Vulnerabilities
	Workflow Misconfigurations

	Threats to Validity
	Related Work
	Conclusions and Future Works
	References

