
Developer Turnover in Global, Industrial Open
Source Projects: Insights from Applying Survival

Analysis
Bin Lin

Università della Svizzera Italiana,
Switzerland

Email: bin.lin@usi.ch

Gregorio Robles
Universidad Rey Juan Carlos,

Spain
Email: grex@gsyc.urjc.es

Alexander Serebrenik
Eindhoven University of Technology,

The Netherlands
Email: a.serebrenik@tue.nl

Abstract—Large open source software projects often have
a globally distributed development team. Studies have shown
developer turnover has a significant impact on the project success.
Frequent developer turnover may lead to loss of productivity due
to lacking relevant knowledge and spending extra time learning
how projects work. Thus, lots of attention has been paid to which
factors are related to developer retention; however, few of them
focus on the impact of activities of individual developers.

In this paper, we study five open source projects from
different organizations and examine whether developer turnover
is affected by when they start contributing and what types of
contributions they are making. Our study reveals that developers
have higher chances to survive in software projects when they
1) start contributing to the project earlier; 2) mainly modify
instead of creating files; 3) mainly code instead of dealing with
documentations. Our results also shed lights on the potential
approaches to improving developer retention.

I . I N T R O D U C T I O N

Large open source software (OSS) projects have been known
to be global software development projects. The research
literature offers some examples of detailed descriptions of
how such projects work in a distributed environment. Good
examples are the GNOME desktop environment [9] and the
FreeBSD operating system project [42]. Although since the
late 1990s, the traditional software industry has to some
extent collaborated with open source communities, currently
we witness a new type of OSS projects, where many companies
come together and collaborate. So, if before we had OSS
projects with a majority of volunteer developers cooperating
with paid employees, nowadays there are projects where volun-
teer developers are a minority and most of the tasks are done
by professionals hired to work on the project [34, 33]. Projects
such as WebKit (with several dozen companies) or especially
OpenStack (with over 500 companies involved) are examples
of these industrial open source software projects [44].

This type of projects are gaining lots of attention in recent
times. Interestingly enough, to the challenge of being globally
developed, these projects have to face a major complexity
as, even if they often set up umbrella organizations such as
foundations or associations, each industry partner has its own
policy regarding human resources and task allocation.

Since developers play a key role in software development,
it is first important to know the factors that can affect the
retention of developers, and second to have tools and methods
to properly analyze and manage retention. Hence, our study
aims to shed some light on basic factors which can impact the
will of developers to stay, and our purpose is that it serves as
a fundamental step for further research on how to improve the
retention rate of developers.

Therefore, we study five industrial OSS projects of different
sizes (in terms of software size, contributors and number
of companies involved) and examine whether the duration
of developers staying in a project is related to following
four factors: (i) the time of first contribution, (ii) the rate of
maintaining own files, (iii) the main action type, and (iv) the
main job type. We study these factors by means of applying
survival analysis, a well-known technique from the medical
sciences. Survival analysis is well-suited for the so-called right-
censored data, i.e., data about patients/activities that are still
alive/ongoing at the time of study. Not surprisingly, survival
analysis has been applied to software evolution problems in
the past [3, 10, 37]. Applying survival analysis, we find that
1) developers who start contributing to the project earlier have
higher survival rates; 2) higher survival rates are found when
developers balance maintaining files created by themselves
with files created by others; 3) developers who mainly modify
files survive longer than those who mainly create files; and 4)
developers who mainly code have a higher survival rate than
those who mainly work on documentation.

The remainder of the paper is structured as follows: our
hypotheses are presented in Section II, while Section III
introduces related research. The methodology used to conduct
the research and a description of the OSS projects used as
case study can be found in Section IV. Research findings
are elaborated in Section V. Section VI discusses the results
and its implications, including the threats to validity. Finally,
Section VII draws conclusions and describes future work.

I I . H Y P O T H E S E S

Previous research has studied the reasons for developers
leaving a job. By adapting earlier results to open source projects



we formulate the following hypotheses.

Yang et al. [52] described different learning trajectories
between early joiners and late joiners in a Coursera MOOC:
while early joiners were actively involved in forum discussions
and course materials, the late joiners participated less actively.
Ultimately, the drop-out rate of the early joiners was found to
be statistically significantly lower.

Moreover, earlier engagement in the project activities can
be expected to provide contributors with more flexibility to
determine their own jobs and as such to achieve a better person-
job fit, that has been shown to be beneficial for the retention
of developers [38]. Thus, we posit:

H1. Developers who start contributing to the project earlier
have higher survival rates.

Autonomy has been reported to have a positive impact on job
satisfaction [48], as it is often reported as one of the general
motivators for software developers [11]. We conjecture that
maintenance of your own code can be seen as preserving
more the autonomy of developers rather than maintaining code
created by others. Furthermore, Lambert et al. [22] have found
that job satisfaction has a significant impact on turnover intent,
i.e., when workers have high job satisfaction they are less
willing to leave. Hence, we link the focus on maintaining
the developers’ own files with longer engagement duration.
However, developers that solely focus on their own contribution
might be too isolated compromising the person-team fit, known
to be beneficial for retention [38]. To balance these two
observation we conjecture:

H2. Developers who balance maintaining files created
by themselves with files created by others will stay longer
than developers who predominantly focus on maintaining
their own files and developers who predominantly focus on
maintaining files created by others.

Martensen et al. [24] showed that creativity and innovation
are important factors in job satisfaction. Software development
has been reported as being perceived as “a form of puzzle
solving, and it is reassuring to their [developers’] ego when
they manage to successfully complete a difficult selection of
code” [15]. As opposed to software development, software
maintenance has been reported as being perceived as entailing
“very little new creation and is therefore categorized as dull,
unexciting detective work” [15]. Hence, we formulate the
following hypothesis:

H3. Developers who mainly create files survive longer than
those who mainly modify files.

Herbsleb et al. [12] stated that “the resistance to documenta-
tion among developers is well known and needs no emphasis.”
Also, in some modern software development methods such
as agile software development [1], more emphasis is given to
working on programming tasks than in a comprehensive and
detailed documentation. Thus, we posit:

H4. Developers who mainly code have a higher survival
rate than those who mainly work on documentation.

I I I . R E L AT E D R E S E A R C H

Developer turnover has been cited many times as one of the
risks in global software development. For instance, Ebert et
al. [7] suggest that staff turnover rates are directly related to the
“drive for global talent allocation” and Dibbern et al. [5] note
that “personnel turnover [was] found to increase client extra
costs.”. It is noteworthy that turnover in a global environment
may be different from location to location. So, some authors
argue that for surviving in a global software development,
managers have to take into account that some global projects
were canceled because of the high staff turnover rates, “which
in other countries might be higher than in Europe” [6, 16].

In OSS projects, developer turnover is a phenomenon that
has been paid already some attention [28, 38]. A major part
of it is, however, centered on the joining process, as attracting
new developers has been a major effort of many open source
communities [43]. Research on the integration of new members
that ranges from the first interactions [41] to the time a
developer requires to become part of the leading core team,
the most active contributors, can be found [13]. As opposed
to these results, Zhou et al. [53, 54] have studied turnover.
As opposed to our work, their results have been based on
the data from the issue tracker augmented with interviews.
Our work provides a complementary perspective on turnover
as hypotheses H2–H4 cannot be answered unless the version
control system can be accessed, while for H1 such an access
provides a different operationalization.

The negative impact of developer turnover on quality in OSS
projects has been studied as well [8]. It is known that turnover
has a negative impact on the productivity due to knowledge
loss and the extra time spent on learning how the project
works [18]. Along similar lines, a recent work of Constantinou
and Mens [4] relates the specialization of the leavers to the
risk they cause to the ecosystem. As opposed to this line of
work, in this paper we do not consider impact of turnover but
rather try to identify developer subgroups that are more likely
to leave the project.

As opposed to earlier research on properties of projects [51,
40] or project teams [39, 45] affecting turnover, we focus on
the activities of developers and investigate how those activities
can impact turnover.

Iqbal [17] investigated turnover patterns and concluded that
members who own the role of a developer in Apache projects
have more contributions than others. However, this study
does not indicate what factors impact the turnover. Sharma et
al. [40] analyze turnover considering both developer and project
factors, including role, number of projects involved, past activity
level, tenure, and age and size of the project. However, they
only show that these factors were related to the turnover and
further explanation would be required to reveal the relationship
between turnover and these factors.

Finally, there is a study performed on the Wikipedia com-
munity that is similar to ours, not only because it has a similar
focus and goals, but also because it uses as well survival
analysis techniques [31].

2



I V. M E T H O D O L O G Y

A. Survival analysis

In the medical domain, survival curves describe the prob-
ability that a subject can survive beyond a specified period:
the x-axis stands for the survival duration (i.e., how long an
individual survives) and the y-axis stands for the probability
that an individual can survive [32]. Ideally, to estimate the
survival curves, one should have the complete data about death
of all the individuals: however, as individuals might still be
alive at the time the study finishes, their death time cannot be
known. To address this special kind of missing data, known
as right-censored data, Kaplan and Meier [19] proposed the
“Kaplan-Meier curves”. Furthermore, one is usually interested
in comparing survival of groups of individuals rather than
individuals themselves, e.g., those subject to treatment as
opposed to the control group. When applied to groups, each
of the groups is represented by one curve.

Kaplan-Meier curves were first used in the medical disci-
pline and then applied to other domains including software
engineering. For example, Bird et al. [3] use survival analysis
to estimate the immigration events in Postgres. Samoladas et
al. [37] applied survival analysis techniques to estimation of
future development of an OSS project. Goeminne et al. [10]
analyzed whether different database frameworks co-occur in
OSS projects and whether some database frameworks are
replaced by others over time.

In this paper, we use survival analysis to understand the
impact of several factors on developers leaving a project. Since
each project can contain several components (i.e., reposito-
ries), we can distinguish between local leavers, that leave the
component (repository) but continue to be active within the
project, and global leavers, that are no longer active in any
of the components (repositories) [27]. Here, we focus on
global leavers and define them as those contributors whose last
commit was made 180 days ago: the choice of the threshold
is motivated by a similar choice made in an earlier study by
Foucault et al. [8]. However, since other threshold choices can
be found in the literature [40, 18] we also study to which
extent the value of this threshold (i.e., 180 days) influences
our results, and therefore have repeated the study with different
thresholds: 30 days and 90 days.

It is known that when a group consists of very few items (i.e.,
contributors in our case), the survival analysis might become
inaccurate and does not have too much meaning. Thus, in the
remainder of our analysis, we have removed those groups with
less than or equal to five subjects.

B. Choice of the case studies

The goal of our research is to explore the validity and
limitations of the hypotheses formulated in Section II. Hence,
we have opted for a case study as recommended by Runeson
and Höst [36].

The datasets we use in our study are obtained from Bitergia1.
Bitergia has developed and maintained dashboards for many

1http://bitergia.com/projects.html

active OSS projects. Those dashboards visualize the informa-
tion about gits, tickets, mailing lists and metrics about software
development. The MySQL data dumps2 used to develop the
dashboards are available for many projects. The data dumps
are generated by CVSAnalY3. We choose Bitergia projects for
our study because these projects are large and active such that
they can be both seen as representative of successful industrial
OSS projects and provide enough data for analysis.

In addition to representativeness, diversity of the dataset is
known to be important in selection of the case studies [30].
Hence, we select five projects from five different organiza-
tions, which are WikiMedia4, OpenStack5, GlusterFS from Red
Hat6, Xen Project from the Linux Foundation7 and Apache
CloudStack8, to ensure that the results are not specific for one
organization.

All case studies can be considered globally developed
software projects. In the companion website of the paper9,
we have included the geographical distribution of developers
by using data from their timezones. This information can be
obtained from their e-mail activity in mailing lists or their
commits in the versioning repositories. For all projects, but
WikiMedia, it can be observed that a substantial part (> 20%)
of the contributions come respectively from the Americas,
Europe and Asia. In the case of WikiMedia, Europe counts
with over 60% and the Americas with over 30%.

All the projects count with a significant amount of full-time
developers paid to work on the project, and the number of
companies involved in them ranges from over 600 companies
in OpenStack, 18 in CloudStack, 11 in GlusterFS, to 9 in
Xen. WikiMedia projects are developed mainly with staff from
the WikiMedia Foundation. Our focus on the industrialized
open source projects means that the findings from these paper
could potentially be applied to other, more traditional software
development environments.

In the datasets, different aliases that are likely to belong to
the same person are combined based on the user name and
email addresses [20, 49]. Hence, we replace aliases with a
unique ID. The numbers of commits, files and contributors
are presented in Table I. We then clean our data by removing
invalid items. Users with abnormal first commit year (e.g.,
1970) are removed. In addition, the identity of contributors
(i.e., user name) is checked and non-human contributors such
as “Jenkins CI bot” are filtered out. The number of contributors
after data cleaning can also be found in Table I.

C. Operationalization

To verify our hypotheses, we operationalize the hypotheses
as follows:

2Database schema details can be seen at http://gsyc.es/∼carlosgc/files/
cvsanaly.pdf.

3https://github.com/MetricsGrimoire/CVSAnalY
4https://wikimedia.biterg.io/
5http://activity.openstack.org/dash/browser/
6http://glusterfs.biterg.io
7http://xen.biterg.io
8http://projects.bitergia.com/apache-cloudstack/browser/
9https://dev-turnover.github.io/timezone.html

3

http://bitergia.com/projects.html
http://gsyc.es/~carlosgc/files/cvsanaly.pdf
http://gsyc.es/~carlosgc/files/cvsanaly.pdf
https://github.com/MetricsGrimoire/CVSAnalY
https://wikimedia.biterg.io/
http://activity.openstack.org/dash/browser/
http://glusterfs.biterg.io
http://xen.biterg.io
http://projects.bitergia.com/apache-cloudstack/browser/
https://dev-turnover.github.io/timezone.html


TABLE I: Statistics of the datasets

Commits Files Contributors
(original)

Contributors
(after cleaning)

WikiMedia 707,844 932,662 2,491 2,488
OpenStack 400,805 316,895 4,065 4,050
GlusterFS 13,396 9,860 165 165

Xen Project 89,827 38,541 912 909
CloudStack 44,595 146,997 314 314

H1. Developers who start contributing to the project earlier
have higher survival rates.

We use first commit year to represent the time of the first
contribution, and then compare the Kaplan-Meier curve for
each cohort of developers. To define the cohorts we use
the year of the first contribution made by the developer.
More fine-grained cohorts are at risk of producing smaller
populations, and in combination with our decision to remove
small groups, will lead to “gaps” between the cohorts hindering
the interpretation of the curves. Similarly, more coarse-grained
cohorts might blur up the distinctions between the groups.

If our hypothesis is supported by the data, the survival curve
of early contributors will be above the one of developers who
joined the project later.

H2. Developers who balance maintaining files created
by themselves with files created by others will stay longer
than developers who predominantly focus on maintaining
their own files and developers who predominantly focus on
maintaining files created by others.

To formalize the notion of “mainly maintaining files created
by themselves” we define the rate of maintaining own files R
of a contributor C as

R =
occurrences of files created by C in all commits by C

occurrences files in all commits by C
.

For example, assume C has two actions in the log: 1)
creating files F1 and F2 in the first commit; 2) modifying
F2 and F3 in the second commit. In total, there are four
occurrences of files in this log: F1, F2 (twice) and F3; three
of these occurrences belong to files created by C herself. The
rate of maintaining own files R is hence 3/4 = 0.75.

The definition of R refers to occurrences of files (also known
as touches [2]) rather than the files themselves to represent
the workload incurred by maintaining the files. We are aware
of the shortcomings of the number of commits and related
number of occurrences as measures of the maintenance effort
or workload; however, these proxies are common in repository
mining research (cf. discussion of Mens [26]).

If our hypothesis is supported by the data, the survival curve
of very low R and very high R will be lower than the survival
curve of the mid-range R.

H3. Developers who mainly create files survive longer than
those who mainly modify files.

The type of each action performed by a developer can be
identified from the versioning system. The different types of
actions are: add file (A), modify file (M), delete file (D), replace

file (R), rename file (V) and copy file (C). We determine the
main action type of a contributor by finding the action type
with the highest percentage in her commits. We calculate the
distribution of main action types in projects. As can be seen
in Table II, the most common actions in the project are “add
file” (A) and “modify file” (M); very few developers conduct
other types of actions as their main action type. Thus, in this
paper we have decided to only consider and compare these two
action types. Furthermore, to address the imbalance between
the “add file” (A) and “modify file” (M) groups, we performed
upsampling. We use upsampling instead of downsampling,
because downsampling can cause information loss.

TABLE II: Distribution of main action types in projects

Type OpenStack CloudStack GlusterFS Xen Project WikiMedia

A 6.32% 8.12% 5.39% 2.94% 13.29%
M 92.49% 88.44% 92.81% 95.76% 85.52%
D 0.47% 2.81% 1.20% 0.44% 0.68%
V 0.68% 0.31% 0.60% 0.87% 0.50%
R 0.00% 0.00% 0.00% 0.00% 0.00%
C 0.05% 0.31% 0.00% 0.00% 0.00%

If our hypothesis is supported by the data, the survival curve
of creators (A) will be higher than the curve of maintainers
(M).

H4. Developers who mainly code have a higher survival
rate than those who mainly work on documentation.

The type of each file in the repository can be categorized
depending on its content. We therefore use heuristics from
other mining repository studies based on file extension and
file name [35, 46]. Specifically, we label files as code, build,
user interface (ui), internationalization (i18n), documentation,
developer documentation (devel-doc), packaging, images, mul-
timedia, or unknown. We identify the main job of a developer
based on the type of files she touches. We do this by
calculating the percentage of each file type in the commits
of the contributor, and then consider the type with the highest
percentage as the contributor’s main job.

If our hypothesis is supported by the data, the survival curve
of coders will be higher than the one of documentation writers.

Once we perform the specific queries that give an answer to
the hypotheses, we use the Lifelines10 software to obtain the
Kaplan-Meier curves. The intermediate data and the code for
survival analysis can be found on our companion website11.

V. R E S U LT S

A. H1. Developers who start contributing to the project earlier
have higher survival rates

Table III records the number of new contributors during
the history of the projects. The table clearly shows that
development teams are in general growing gradually in all
projects, in spite of some fluctuation.

The survival curve based on the first commit year can be
found in Figure 1.

10https://github.com/CamDavidsonPilon/lifelines
11https://dev-turnover.github.io/index.html

4

https://github.com/CamDavidsonPilon/lifelines
https://dev-turnover.github.io/index.html


0 1000 2000 3000 4000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

(a) WikiMedia

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

2008
2009
2010
2011
2012
2013
2014
2015

(b) OpenStack

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

2009
2010
2011
2012
2013
2014
2015

(c) GlusterFS

0 500 1000 1500 2000 2500 3000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015

(d) Xen Project

0 200 400 600 800 1000 1200 1400 1600
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

2010
2011
2012
2013
2014
2015

(e) CloudStack

Fig. 1: Survival analysis by first commit year

TABLE III: Number of new contributors per year: WM—
WikiMedia, OS—OpenStack, CS—CloudStack

WM OS GlusterFS Xen CS WM OS GlusterFS Xen CS

2001 2 - - - - 2008 91 12 - 43 -
2002 1 - - 8 - 2009 86 16 22 49 -
2003 22 - - 27 - 2010 108 110 11 86 30
2004 26 - - 31 - 2011 296 254 19 98 26
2005 23 - - 103 - 2012 532 548 25 89 72
2006 44 1 - 59 - 2013 602 1,050 42 102 93
2007 71 1 - 37 - 2014 522 1,285 36 130 80

By inspecting Figure 1, we observe that in all projects in the
most recent years, newer developers are less willing to stay than
older developers. This observation supports our hypothesis.

Since code complexity strongly influences contributions
from new developers in a negative way [29], a potential
reason for the trend in the graph could be that the growing
code complexity forms an obstacle to contribution of more
recently joining developers. Being unable to contribute harms
the retention of developers. The survival rates in the first two
years of OpenStack and the first five years of the Xen project
are lower than for other years. The reason might be that the
systems were still at the initial phase and code complexity was
still acceptable for newcomers.

B. H2. Developers who balance maintaining files created by
themselves with files created by others will stay longer than
developers who predominantly focus on maintaining their own
files and developers who predominantly focus on maintaining
files created by others.

The survival curves based on the rate of maintaining own
files can be found in Figure 2. We observe that, for instance,
an interesting phenomenon is that developers with the lowest
and the highest rates (0-10% and 90-100%) of maintaining
their own files always have very low survival rates. The result
supports our initial hypothesis; moreover, it provides some
insights for when the best “balance” is reached. The balance
does not mean developers should spend half of their effort on
both activities. Instead, the results show that survival rates are
higher when developers spend less than half of their effort on
maintaining their own files.

C. H3. developers who mainly create files survive longer than
those who mainly modify files

The survival curves based on the main action type can be
found in Figure 3. The survival curves in the figure contradict
our assumption, as in all projects developers who mainly create
files stay shorter than those who mainly maintain files.

Since the data is highly unbalanced, we use upsampling to
increase the number of “A—add file” samples by replicating
them several times, such that (after the replication) the number
is as close as possible to the number of “M—modify file”
samples. The numbers of developers with main action type “A”
(including after upsampling) and “M” can be seen in Table IV.
The survival curves after upsampling, which can be seen in

5



0 1000 2000 3000 4000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

00-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

(a) WikiMedia

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

00-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

(b) OpenStack

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

00-10%
10-20%
20-30%
30-40%
90-100%

(c) GlusterFS

0 500 1000 1500 2000 2500 3000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

00-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

(d) Xen

0 200 400 600 800 1000 1200 1400 1600
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

00-10%
10-20%
20-30%
30-40%
40-50%
50-60%
60-70%
70-80%
80-90%
90-100%

(e) CloudStack

Fig. 2: Survival analysis by the rate of maintaining own files

0 1000 2000 3000 4000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

A
M

(a) WikiMedia

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

A
M

(b) OpenStack

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

A
M

(c) GlusterFS

0 500 1000 1500 2000 2500 3000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

A
M

(d) Xen

0 200 400 600 800 1000 1200 1400 1600
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

A
M

(e) CloudStack

Fig. 3: Survival analysis by the main action type
6



TABLE IV: Developers that predominantly add (A) and modify
(M) files

A M A (after upsampling)

WikiMedia 308 2,152 2,156
OpenStack 245 3,758 3,675
GlusterFS 9 154 153

Xen 25 875 862
CloudStack 286 277 271

Appendix C12, show the same trends as those in Figure 3.
To statistically support our perception, we applied log-rank
test [47] to test “H3’: developers who mainly modify files
survive longer than those who mainly create files”. We test
both without and with upsampling.

If no upsampling is used, the statistical test confirms H3’ for
WikiMedia, OpenStack (for both projects the p-values are too
small to be computed precisely) and Xen (p ' 0.03). When
upsampling is applied to counteract the possible influence of
the group imbalance on the results of log-rank test, H3’ is
confirmed for all projects13.

The log-rank test results can be a strong evidence that
developers whose main action is “A—add file” are more likely
to leave the projects compared to those whose main actions is
“M—modify file”.

D. H4. developers who mainly code have a higher survival
rate than those who mainly work on documentation

The survival curves based on the main job can be found
in Figure 4. The figures show that developers who mainly
write code stay longer than developers who mainly work on
documentation. The possible reason is that coding usually takes
more iterations than documentation, which forces users to stay
longer to participate in the revisions. Another potential reason
is that coding gives developers more sense of achievement, as
it is known from the research literature that there is a lack of
interest in documentation [25]. Since the data is unbalanced,
we use the upsampling method to resize the “documentation”
samples by completely duplicating them several times, such
that the resized number is as close to the number of “coding”
samples. The numbers of developers with main action type
“documentation” (including after upsampling) and “code” can
be see in Table V. The survival curves after upsampling, which
can be seen in Appendix D14, also show the same trends as in
Figure 4.

Similarly to the study of H3, we also applied log-rank test.
Dataset “GlusterFS” is excluded in this case, since it contains
too few items and upsampling might cause a huge bias. The
results for WikiMedia, OpenStack and Xen are statistically

12Due to page limits, all appendices are uploaded online separately, Please
refer to Appendix C at https://dev-turnover.github.io/download/appendix.pdf

13The p-values are too small to be computed precisely for WikiMedia,
OpenStack and Xen. For GlusterFS p ' 0.002, for CloudStack p ' 0.009.

14Please refer to Appendix D at https://dev-turnover.github.io/download/
appendix.pdf

0 1000 2000 3000 4000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

code
documentation

(a) WikiMedia

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

code
documentation

(b) OpenStack

0 500 1000 1500 2000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

code
documentation

(c) GlusterFS

0 500 1000 1500 2000 2500 3000
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

code
documentation

(d) Xen

0 200 400 600 800 1000 1200 1400 1600
Days active in the project (censoring: 180 days)

0.0

0.2

0.4

0.6

0.8

1.0

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

code
documentation

(e) CloudStack

Fig. 4: Survival analysis by the main job
7

https://dev-turnover.github.io/download/appendix.pdf
https://dev-turnover.github.io/download/appendix.pdf
https://dev-turnover.github.io/download/appendix.pdf


significant, whether upsampling is used or not15. For these
projects H4 can be confirmed, i.e., developers who mainly
code have a higher survival rate than those who mainly work
on documentation. For the remaining project, CloudStack, the
evidence is not strong enough to support H4 (both when
upsampling is used and when it is not used).

Hence, overall we can say that H4 is proved true in most
cases. To obtain further insights in relation between the job
type and turnover more projects can be investigated or other
methods, e.g., qualitative studies, can be applied.

TABLE V: Numbers of developers with main job type “Code”
and “Documentation”

dataset Documentation Code Documentation (upsampling)

WikiMedia 82 1,818 1,804
OpenStack 349 2,860 2,792
GlusterFS 4 135 -

Xen Project 8 794 792
CloudStack 28 239 252

V I . D I S C U S S I O N A N D T H R E AT S T O VA L I D I T Y

A. Discussion

1) Developer retention improvement: We have revealed
some factors related to developer turnover. Since high de-
veloper turnover threatens the success of software projects,
we are interested in how we can improve developer retention,
especially for globally distributed development teams.

We have found that developers who join a project earlier have
higher chances to stay longer. Although the root cause of this
phenomenon is not disclosed in our work, we can assume that
developers might face difficulties to contribute to the project
or are less loyal to the projects. No matter which is the real
reason, it might be helpful to get newcomers more engaged in
the project and have better onboarding assistance.

Another aspect to consider to improve developer retention
is how to distribute tasks. Through the results obtained when
examining H2, H3 and H4, we propose several strategies:

• Balance collaboration and individualism, i.e., when assign-
ing maintenance tasks ensure that developers maintain
both code developed by others and their own code.

• For those developers who mainly write new code, they
could do more code maintenance tasks.

• Developers in charge of documentation should not only
deal with documentations, instead, some coding tasks may
increase their chances of staying in the projects.

2) Impact of the threshold for leavers: In this paper, we use
180 days as the threshold to determine whether a developer
is a leaver or not. To understand the impact of the choice of
the threshold, we have repeated the study with different values:
30 days and 90 days. The survival curves can be found in

15When upsampling is applied the p-values for the three projects were too
small to be calculated precisely. Without upsampling, for Xen p ' 0.018,
WikiMedia 1 × 10−5 and for OpenStack the p-value was too small to be
calculated precisely.

Appendix A and Appendix B, respectively16. The results show
the same trends as we reported in previous sections.

B. Threats to validity

Several factors may affect the validity of our study results
and some limitations exist in this study.

1) External validity: Although five projects from different
organizations are used to conduct the study, the results obtained
might not apply to other types of OSS projects, such as small
scale OSS projects. Besides, all the projects in the study are
maintained with git. It is unclear whether projects maintained
with other version control tools such as Subversion will show
a different pattern of the relationship between leavers and the
factors presented in this report.

2) Internal validity: In our study, we consider the time to
join the project, the rate of maintaining own files, the main
action type and the main job type. However, during software
project development, many other factors might impact the
developers’ will to stick to the project, such as the importance
and maturity of the project. Due to the limitation of the datasets,
we cannot take all factors into account. Furthermore, some
human aspects such as the personal manners of the leaders
might impact the will of developers to stay, which cannot
be seen from our datasets. Additionally, some factors might
interfere or cooperate with each other, nevertheless, we do not
inspect this possibility in our study.

3) Construct validity: During the data processing, the contri-
bution by developers might not have been computed correctly
because the identities of developers are not correctly merged.
That is, different developers may have been identified as the
same person, and developers who have several accounts might
not have been detected.

V I I . C O N C L U S I O N S A N D F U T U R E W O R K

In this report, we examine whether four factors (the time
to join the project, the rate of maintaining own files, the main
action type and the main job type) affect the behavior of
developers to stay in a project. We conduct survival analysis on
five global, industrial OSS projects and find out 1) in general,
earlier developers stay longer than later developers; 2) the
survival rate of developers is not positively correlated to the
percentage of maintaining own files; 3) developers who mainly
modify files stay longer than those who mainly create files; 4)
developers whose main job is coding do have higher survival
rate than those who mainly maintain documentations.

While our study brings initial insights on the factors which
impact how long developers survive, more research should be
done to gain deeper understandings of why these phenomena
happen. While the reasons behind the phenomena cannot be
easily discovered with our dataset, a survey can be conducted
among leavers to verify the potential reasons proposed in
the report and the communication channels including mailing
lists can be mined. In addition, many other factors can be
involved in the study. Research has shown that the motivations

16Please refer to Appendix A and Appendix B at https://dev-turnover.github.
io/download/appendix.pdf

8

https://dev-turnover.github.io/download/appendix.pdf
https://dev-turnover.github.io/download/appendix.pdf


of developers to participate in an OSS project are influenced
by the identification of participants [14], the transformational
leadership of leaders and an active management style [23],
and the emotions of developers [50, 21]. We could take these
factors into account and explore the role of these human aspects
in developers’ turnover intent. Furthermore, a more challenging
task is to develop a model which predicts how long developers
will stay in a project based on several factors.

A C K N O W L E D G M E N T S

The authors would like to acknowledge financial support of
SENECA (MSCA-ITN-2014-EID) and eMadrid (S2013/ICE-
2715). We are very grateful to Bitergia for sharing their data
with us, and to Mathieu Goeminne for his valuable feedback
on the preliminary versions of this manuscript.

R E F E R E N C E S

[1] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn,
W. Cunningham, M. Fowler, J. Grenning, J. Highsmith,
A. Hunt, R. Jeffries, et al. Manifesto for Agile Software
Development, 2001.

[2] K. Beecher, C. Boldyreff, A. Capiluppi, and S. Rank.
Evolutionary success of open source software: an investi-
gation into exogenous drivers. Electronic communications
of the EASST, 2008.

[3] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and
G. Hsu. Open borders? Immigration in Open Source
projects. In MSR, pages 6–11. IEEE, 2007.

[4] E. Constantinou and T. Mens. Socio-technical evolution
of the Ruby ecosystem in GitHub. In SANER. IEEE,
2017.

[5] J. Dibbern, J. Winkler, and A. Heinzl. Explaining
variations in client extra costs between software projects
offshored to India. MIS quarterly, 32(2):333–366, 2008.

[6] C. Ebert and P. De Neve. Surviving Global Software
Development. IEEE Software, 18(2):62–69, 2001.

[7] C. Ebert, B. K. Murthy, and N. N. Jha. Managing risks
in Global Software Engineering: Principles and practices.
In ICGSE, pages 131–140. IEEE, 2008.

[8] M. Foucault, M. Palyart, X. Blanc, G. C. Murphy, and
J.-R. Falleri. Impact of developer turnover on quality in
Open-Source Software. In FSE, pages 829–841. ACM,
2015.

[9] D. M. German. The GNOME project: A case study of
Open Source, Global Software Development. Software
Process: Improvement and Practice, 8(4):201–215, 2003.

[10] M. Goeminne and T. Mens. Towards a survival analysis
of database framework usage in Java projects. In ICSME,
pages 551–555. IEEE, 2015.

[11] T. Hall, H. Sharp, S. Beecham, N. Baddoo, and H. Robin-
son. What do we know about developer motivation? IEEE
Software, 25(4):92–94, 2008.

[12] J. D. Herbsleb and D. Moitra. Global Software Develop-
ment. IEEE Software, 18(2):16–20, 2001.

[13] I. Herraiz, G. Robles, J. J. Amor, T. Romera, and J. M.
González Barahona. The processes of joining in Global

Distributed Software projects. In International workshop
on Global software development for the practitioner,
pages 27–33. ACM, 2006.

[14] G. Hertel, S. Niedner, and S. Herrmann. Motivation of
software developers in Open Source projects: an Internet-
based survey of contributors to the Linux kernel. Research
Policy, 32(7):1159–1177, 2003.

[15] D. A. Higgins. Data Structured Software Maintenance:
The Warnier/Orr Approach. Dorset House Publishing
Company, 1986.

[16] H. Holmstrom, E. Ó. Conchúir, J. Agerfalk, and B. Fitzger-
ald. Global Software Development challenges: A case
study on temporal, geographical and socio-cultural dis-
tance. In ICGSE, pages 3–11. IEEE, 2006.

[17] A. Iqbal. Understanding Contributor to Developer
Turnover Patterns in OSS Projects: A Case Study of
Apache Projects. ISRN Software Engineering, 2014, 2014.

[18] D. Izquierdo-Cortazar, G. Robles, F. Ortega, and J. M.
González-Barahona. Using software archaeology to
measure knowledge loss in software projects due to
developer turnover. In HICSS, pages 1–10. IEEE, 2009.

[19] E. L. Kaplan and P. Meier. Nonparametric estimation
from incomplete observations. Journal of the American
statistical association, 53(282):457–481, 1958.

[20] E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J.
van den Brand. Who’s who in gnome: Using LSA to
merge software repository identities. In ICSM, pages
592–595, 2012.

[21] K. Lakhani and R. G. Wolf. Why Hackers Do What They
Do: Understanding Motivation and Effort in Free/Open
Source Software Projects. Social Science Research
Network, 49(September):1–27, 2003.

[22] E. G. Lambert, N. L. Hogan, and S. M. Barton. The
impact of job satisfaction on turnover intent: A test of
a structural measurement model using a national sample
of workers. The Social Science Journal, 38(2):233–250,
2001.

[23] Y. Li, C.-H. Tan, and H.-H. Teo. Leadership characteris-
tics and developers’ motivation in Open Source Software
development. Information & Management, 49(5):257–
267, 2012.

[24] A. Martensen and L. Grønholdt. Internal marketing: a
study of employee loyalty, its determinants and conse-
quences. Innovative Marketing, 2(4):92–116, 2006.

[25] B. Mehlenbacher. Documentation: not yet implemented,
but coming soon. The HCI Handbook: Fundamentals,
Evolving Technologies, and Emerging Applications, pages
527–543, 2003.

[26] T. Mens. Evolving software ecosystems A historical
and ecological perspective. In M. Irlbeck, D. A. Peled,
and A. Pretschner, editors, Dependable Software Systems
Engineering, volume 40 of NATO Science for Peace
and Security Series, D: Information and Communication
Security, pages 170–192. IOS Press, 2015.

[27] T. Mens, M. Claes, P. Grosjean, and A. Serebrenik. Study-
ing evolving software ecosystems based on ecological

9



models. In T. Mens, A. Serebrenik, and A. Cleve, editors,
Evolving Software Systems, chapter 10, pages 297–326.
Springer, 2014.

[28] V. Midha and P. Palvia. Retention and quality in Open
Source Software projects. AMCIS 2007 Proceedings,
page 25, 2007.

[29] V. Midha, R. Singh, P. Palvia, and N. Kshetri. Improving
open source software maintenance. Journal of Computer
Information Systems, 50(3):81–90, 2010.

[30] M. Nagappan, T. Zimmermann, and C. Bird. Diversity
in software engineering research. In ESEC/FSE, pages
466–476, New York, NY, USA, 2013. ACM.

[31] F. Ortega and D. Izquierdo-Cortazar. Survival analysis
in open development projects. In FLOSS, pages 7–12.
IEEE, 2009.

[32] J. T. Rich, J. G. Neely, R. C. Paniello, C. C. Voelker,
B. Nussenbaum, and E. W. Wang. A practical guide
to understanding Kaplan-Meier curves. Otolaryngology-
Head and Neck Surgery, 143(3):331–336, 2010.

[33] D. Riehle. How Open Source is changing the software
developer’s career. IEEE Computer, 48(5):51–57, 2015.

[34] D. Riehle, P. Riemer, C. Kolassa, and M. Schmidt. Paid
vs. volunteer work in Open Source. In HICSS, pages
3286–3295. IEEE, 2014.

[35] G. Robles, J. M. Gonzalez-Barahona, and J. J. Merelo.
Beyond source code: The importance of other artifacts in
software development (a case study). Journal of Systems
and Software, 79(9):1233–1248, 2006.

[36] P. Runeson and M. Höst. Guidelines for conducting and
reporting case study research in software engineering.
Empirical Software Engineering, 14(2):131–164, 2009.

[37] I. Samoladas, L. Angelis, and I. Stamelos. Survival analy-
sis on the duration of Open Source projects. Information
and Software Technology, 52(9):902–922, 2010.

[38] A. Schilling, S. Laumer, and T. Weitzel. Who Will
Remain? An Evaluation of Actual Person-Job and Person-
Team Fit to Predict Developer Retention in FLOSS
Projects. In HICSS, pages 3446–3455, 2012.

[39] A. Schilling, S. Laumer, and T. Weitzel. Together but
apart: How spatial, temporal and cultural distances affect
FLOSS developers’ project retention. In Proceedings of
the 2013 annual conference on Computers and people
research, pages 167–172. ACM, 2013.

[40] P. N. Sharma, J. Hulland, and S. Daniel. Examining
Turnover in Open Source Software Projects Using a
Logistic Hierarchical Linear Modeling Approach. In
OSS, volume 378 of IFIP Advances in Information and
Communication Technology, pages 331–337, 2012.

[41] B. Shibuya and T. Tamai. Understanding the process of
participating in Open Source communities. In FLOSS,
pages 1–6. IEEE Computer Society, 2009.

[42] D. Spinellis. Global Software Development in the
FreeBSD project. In International workshop on Global
software development for the practitioner, pages 73–79.
ACM, 2006.

[43] I. Steinmacher, M. A. Gerosa, and D. Redmiles. Attract-
ing, onboarding, and retaining newcomer developers in
Open Source Software projects. In Workshop on Global
Software Development in a CSCW Perspective, 2014.

[44] J. Teixeira. Understanding coopetition in the open-source
arena: The cases of webkit and openstack. In Proceedings
of The International Symposium on Open Collaboration,
page 39. ACM, 2014.

[45] B. Vasilescu, D. Posnett, B. Ray, M. G. van den Brand,
A. Serebrenik, P. Devanbu, and V. Filkov. Gender and
Tenure Diversity in GitHub Teams. In CHI, pages 3789–
3798, 2015.

[46] B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens.
On the variation and specialisation of workload – A case
study of the GNOME ecosystem community. Empirical
Software Engineering, 19(4):955–1008, 2013.

[47] S. Wellek. A log-rank test for equivalence of two survivor
functions. Biometrics, pages 877–881, 1993.

[48] S. G. Westlund and J. C. Hannon. Retaining talent:
Assessing job satisfaction facets most significantly related
to software developer turnover intentions. Journal of
Information Technology Management, 19(4):1–15, 2008.

[49] I. S. Wiese, J. Teodoro, I. S. da Silva, C. Treude, and M. A.
Gerosa. Who is who in the mailing list? Comparing six
disambiguation heuristics to identify multiple addresses
of a participant. In ICSME, page 13. IEEE, 2016.

[50] C.-G. Wu, J. H. Gerlach, and C. E. Young. An Em-
pirical Analysis of Open Source Software Developers’
Motivations and Continuance Intentions. Information and
Management, 44(3):253–262, 2007.

[51] K. Yamashita, Y. Kamei, S. McIntosh, A. E. Hassan, and
N. Ubayashi. Magnet or sticky? Measuring project charac-
teristics from the perspective of developer attraction and
retention. Journal of Information Processing, 24(2):339–
348, 2016.

[52] D. Yang, T. Sinha, D. Adamson, and C. P. Rose. Turn
on, tune in, drop out: Anticipating student dropouts in
massive open online courses. In NIPS Data-Driven
Education Workshop, pages 13–20, Lake Tahoe, NV, USA,
2013.

[53] M. Zhou and A. Mockus. Who will stay in the floss
community? modeling participant’s initial behavior. TSE,
41(1):82–99, Jan 2015.

[54] M. Zhou, A. Mockus, X. Ma, L. Zhang, and H. Mei.
Inflow and retention in oss communities with commercial
involvement: A case study of three hybrid projects.
TOSEM, 25(2):13:1–13:29, Apr. 2016.

10


