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Abstract—Meaningless identifiers as well as inconsistent use
of identifiers in the source code might hinder code readability
and result in increased software maintenance efforts. Over the
past years, effort has been devoted to promoting a consistent
usage of identifiers across different parts of a system through
approaches exploiting static code analysis and Natural Language
Processing (NLP). These techniques have been evaluated in small-
scale studies, but it is unclear how they compare to each other
and how they complement each other. Furthermore, a full-fledged
larger empirical evaluation is still missing.

We aim at bridging this gap. We asked developers of five
projects to assess the meaningfulness of the recommendations
generated by three techniques, two already existing in the
literature (one exploiting static analysis, one using NLP) and
a novel one we propose. With a total of 922 rename refactorings
evaluated, this is, to the best of our knowledge, the largest
empirical study conducted to assess and compare rename refac-
toring tools promoting a consistent use of identifiers. Our study
sheds light on the current state-of-the-art in rename refactoring
recommenders, and indicates directions for future work.

I. INTRODUCTION

In programming languages, identifiers are used to name
program entities; e.g., in Java, identifiers include names of
packages, classes, interfaces, methods, and variables. Iden-
tifiers account for ~30% of the tokens and ~70% of the
characters in the source code [1]. Naming identifiers in a care-
ful, meaningful, and consistent manner likely eases program
comprehension and supports developers in building consistent
and coherent conceptual models [2].

Instead, poorly chosen identifiers might create a mismatch
between the developers’ cognitive model and the intended
meaning of the identifiers, thus ultimately increasing the risk
of fault proneness. Indeed, several studies have shown that
bugs are more likely to reside in code with low quality iden-
tifiers [3l], [4]. Arnaoudova et al. [3] also found that methods
containing identifiers with higher physical and conceptual
dispersion are more fault-prone. This suggests the important
role played by a specific class of identifiers, i.e., local variables
and method parameters, in determining the quality of methods.

Naming conventions can help to improve the quality of
identifiers. However, they are often too general, and cannot be
automatically enforced to ensure consistent and meaningful
identifiers. For example, the Java Language Speciﬁcatiorﬂ
indicates rules for naming local variables and parameters: e.g.,
“should be short, yet meaningful”. Clearly, these requirements
do not guarantee consistent variable naming.

Uhttps://docs.oracle.com/javase/specs/jls/se7/html/jls-6.html

For example, developers might use “localVar” and
“varLocal” in different code locations even if these two
names are used in the same context and with the same
meaning. Also, synonyms might be used to name the same
objects, such as “car” and “auto”. Finally, developers might
not completely adhere to the rules defined in project-specific
naming conventions.

Researchers have presented tools to support developers in
the consistent use of identifiers. Thies and Roth [6] analyzed
variable assignments to identify pairs of variables likely refer-
ring to the same object but named differently. Allamanis et al.
[[7] pioneered the use of NLP techniques to support identifiers
renaming. Their NATURALIZE tool exploits a language model
to infer from a code base the naming conventions and to spot
unnatural identifiers (i.e., unexpected identifiers), that should
be renamed to promote consistency.

To obtain a reliable evaluation of approaches supporting au-
tomatic identifier renaming, the original authors of the source
code should be involved in assessing the meaningfulness of
the suggested refactorings. However, running such evaluations
is expensive, thus refactoring techniques are often evaluated
in “artificial scenarios” (e.g., injecting a meaningless identifier
in the code and check whether the tool is able to recommend
a rename refactoring for it) and/or by relying on the manual
evaluation of a limited number of recommended rename refac-
torings. For example, Thies and Roth [[6] manually assessed
the meaningfulness of 32 recommendations generated by their
tool. Instead, Allamanis et al. [7] firstly analyzed 33 rename
recommendations generated by NATURALIZE, and then opened
pull requests in open source projects to evaluatethe meaning-
fulness of 18 renaming recommended by NATURALIZE (for a
total of 51 data points).

We aim at assessing the meaningfulness of the rename
refactorings recommended by state-of-the-art approaches on
a larger scale (922 evaluations in total) and by only relying
on developers having a first-hand experience on the object sys-
tems of our study. We evaluated two existing approaches, i.e.,
the one by Thies and Roth [6] exploiting static code analysis,
and the NATURALIZE tool [7]] using NLP techniques to support
identifier renaming. In addition, we propose a variation of
NATURALIZE, named LEAR (LExicAl Renaming), exploiting
a different concept of language model more focused on the
lexical information present in the code. We conducted exten-
sive empirical comparison of these three tools. Our results
support the potential practical use of the identifier renaming
approaches and indicates directions for improvement.
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II. RELATED WORK

We discuss the literature related to the study of identifiers’
quality and to techniques supporting the automatic identifier
renaming. We describe in detail two of the techniques that are
part of our empirical study, and in particular the approach by
Thies and Roth [6] and the NATURALIZE tool by Allamanis
et al. [[7]]. The third approach involved in our evaluation, named
LEAR, is described in Section

Lawrie et al. [8] report the results of an experiment in
which over 100 developers were asked to describe 12 different
functions. The functions used three different types of iden-
tifiers, i.e., single letters, abbreviations, and full words. The
results showed that developers tend to comprehend identifiers
composed of full words better than single letters/abbreviations.
Lawrie et al. [9] also investigated the identifier quality based
on almost 50 million lines of code, covering different program-
ming languages. They found that modern software projects
have better quality of identifier names than old projects.

Butler et al. [3] used eleven identifier naming guidelines
for Java to evaluate the quality of identifiers. They found sta-
tistically significant associations between the identifier names
violating at least one guideline and code quality issues reported
by a static analysis tool. Based on this finding, Butler et al.
[10] conclude that some of these naming guidelines can be
used as a light-weight diagnostic to identify areas of poten-
tially problematic code. Murphy-Hill ef al. [[L1] investigated
the adoption of refactoring tools in the IDE, reporting that
rename refactoring is among the most frequently performed
operations.

Much effort has been devoted to improving the quality of
identifier names, for example via identifier splitting [12], [[13],
[14] and expansion [15], [[L6]]. However, these approaches can-
not address the problem caused by non-adherence to naming
conventions or by the inconsistent use of identifiers.

Reiss [[17]] proposed a tool that learns code style from
existing source code, such as identifier conventions and in-
dentation, and applies it automatically on a new code artifact,
thus making it consistent with the rest of the system. A similar
tool is SmartFormatter [[18]] that also learns the lexical form
of terms used in identifiers.

Caprile and Tonella [[19] proposed an approach to restructure
identifiers with the goal of enhancing their meaningfulness.
The approach builds a standard lexicon dictionary and a syn-
onyms dictionary by analyzing a set of programs. Then, when
analyzing a new program, the devised approach decomposes
each identifier into the terms composing it and checks whether
each term is “standard” according to the built dictionary. Non-
standard terms are suggested to be replaced by their standard
forms (e.g., expand upd into update). While their approach
was foundational for the field of identifier restructuring, we
do not consider it in our empirical study since we focus on
techniques aimed at promoting a consistent use of identifiers
across a system. The approach by Caprile and Tonella [19]
is focused on improving the meaningfulness of identifiers,
without considering their consistent use.

Hgst and @stvold [20] presented an approach to identify
naming bugs, i.e., a method name not representative of its
implementation. The approach mines method naming rules
from a corpus of Java applications, and suggests renamings for
methods not following the learned rules. In our study we did
not consider the approach by Hgst and @stvold since we focus
on techniques recommending identifier renames for methods’
variables and parameters. Feldthaus and Mgller [21]] proposed
a technique to support rename refactorings in JavaScript. When
a developer decides to rename a variable v, a static analysis
technique is applied to identify v’s occurrences that need to
be consistently renamed. The list of identified occurrences is
provided to the developer for inspection. Jablonski and Hou
[22]] proposed CReN, a tool to track copy-and-paste clones and
support identifier renaming in the IDE. A set of rules based on
relationships between identifiers is used to infer developers’
intentions (e.g., two identifiers that are frequently renamed
together). Also these two approaches have not been considered
in our study since we focus on techniques suggesting renaming
operations to promote a consistent use of identifiers.

A. Thies and Roth [|6]] - Static code analysis

Thies and Roth [6] present a tool to support identifier re-
naming based on information extracted via static code analysis.
The main idea is to exploit information derived by variable as-
signments to identify the inconsistent use of identifiers to name
variables referring to the same object. The authors consider
two types of assignments: 1) a variable is assigned to another
variable (e.g., paper = bestPaper); 2) a variable is assigned
to a method invocation (e.g., paper = getBestPaper()).
For the second case, the assignment can be seen as the
assignment to the variable returned by the method. In our
example, assume that the method getBestPaper() returns
a variable named ‘“bestPaper”, the assignment is treated
as paper = bestPaper. Once the information about variable
assignments is extracted for all variables, an assignment graph
is constructed where each node represents a variable and an
edge connecting two variables represents an assignment. If an
edge connects two nodes named by using different identifiers
but representing two variables of the same type, the tool
generates a rename recommendation.

To evaluate their approach, Thies and Roth [6] applied
their tool to four open source projects, and manually in-
spected renaming suggestions generated for variables with
non-primitive types. As a result, 21 out of 32 suggestions
appear to be beneficial. Among the 21 useful suggestions, 4
of them are related to synonyms and 17 to inaccurate choice
of the identifiers.

In our study, we re-implemented the approach by Thies and
Roth since their tool is not publicly available and we refer
to this approach as CA-RENAMING, to stress the fact that it
only relies on static code analysis. We selected this approach
because it is one of the very few existing approaches to reduce
the inconsistent use of identifiers, while most approaches
focus on increasing the meaningfulness of identifiers without
considering naming consistency.



B. Allamanis et al. [/] - NLP

Allamanis et al. [7] present a framework, named NATURAL-
IZE, to recommend natural identifier names and formatting
conventions by applying NLP to source code. One of the
goals of NATURALIZE is to promote identifier consistency.
NATURALIZE exploits a m-gram language model to estimate
the probability that a specific identifier should be used in
a given context to name a variable. Language models are
widely employed in many domains such as speech recogni-
tion and code completion. The n-gram model is one of the
most commonly used language models and it determines the
probability of having a word w; given the previous n-1 words.
This probability is denoted by p(w;|w;—1,W;—2,. .., Wi—pnt1),
where w;_p41,...,w;—1,w; are n continuous words. The
probability that w; follows w;_p41,...,W;—2,w;—1 iS es-
timated by training the language model on a training set,
composed of textual documents. When applying the language
model to software-related tasks, like code completion, the
training set is composed of code documents.

NATURALIZE follows a two-step approach to recommend a
rename refactoring for a variable v:

1) Generating candidate names. NATURALIZE uses the
AST of the program under analysis to find the set of
locations, L, in which v appears. Then, it builds a snippet
S representing the context in which v is used by taking
the lowest common ancestor in AST of nodes in L [7]].
S is then linearly scanned by using a moving window of
length n, where n is the number of tokens. A token could
be an identifier, a syntactic symbol of the programming
language, like “;”, a reserved keyword of the language
and so on. All n-grams containing v are extracted and
the collection of these n-grams becomes the context set
of v. If another variable v; other than v occurs in at least
one similar context (i.e., in at least one similar n-gram),
a new snippet S; is created, i.e., S with all v replaced by
v;, and it is added to the list of alternative candidates.

2) Ranking candidates. A score function leveraging a lan-
guage model is defined to rank the candidates generated
in the previous step. While any probability model can
be used in the score function, the authors apply the n-
gram language model we previously describe to assess
the probability of a given candidate. In other words,
given the context (i.e., the set of n-grams) where an
identifier v is used, the probability of renaming v into
v; 18 higher if v; is used in the training set in which the
language model has been built in a similar context.

To evaluate NATURALIZE, the authors assessed the mean-
ingfulness of the refactorings recommended for 30 methods
(for a total of 33 variable renamings). Half of the suggestions
were identified as meaningful. Also, they submitted 18 patches
to five GitHub projects, among which 14 were accepted.

The goal of NATURALIZE (i.e., promoting consistency), its
peculiarity of relying on NLP techniques, and its availabilityﬂ
made it an obvious choice for our study.

Zhttp://groups.inf.ed.ac.uk/naturalize/

We started from the core idea behind NATURALIZE (i.e.,
using a language model to promote a consistent use of iden-
tifiers) to define an alternative rename refactoring approach,
named LEAR, that is presented in the next section and tries to
overcome a number of possible limitations of the NATURALIZE
approach. For example, NATURALIZE uses all textual tokens
in the n-gram language model (including, e.g., punctuation) to
characterize the context in which an identifier is used; we be-
lieve that all the syntactic sugar in the programming language
could mostly represent noise for the language model, thus
reducing the quality of the rename recommendations. Also,
NATURALIZE does not verifies whether the recommended
rename refactorings are valid or not (e.g., it is not possible
to rename an identifier id used in id, in a method m, if id; is
already used in m to name any other variable/parameter. We
present LEAR in the next section, by paying particular attention
to stressing its main differences with respect to NATURALIZE.

III. LEXICAL RENAMING

Our LEAR recommends renaming operations related to (i)
variables declared in methods and (ii) method parameters.
The renaming of methods/classes as well as of instance/class
variables is not currently supported, since, as it will be clearer
later, LEAR works at method level. The support of other types
of identifiers is part of our future work agenda. In the following
we describe in detail the main steps of LEAR.

Identifying methods and extracting the vocabulary.
LEAR parses the source code of the input system by relying
on the srcML infrastructure [23]. The goal of the parsing is to
extract (i) the complete list of methods, and (ii) the identifiers’
vocabulary, defined as the list of all the identifiers used to
name parameters and variables (declared at both method and
class level) in the whole project. From now on we refer to
the identifiers’ vocabulary simply as the vocabulary. Once
the vocabulary and the list of methods have been extracted,
the following steps are performed for each method m in the
system. We use the method in Listing [T] as a running example.

N-gram Extraction from m. We extract all textual tokens
from the method m under analysis, by removing (i) comments
and string literals, (ii) all non-textual content, i.e., punctuation
and (iii) non-interesting words, such as Java keywords and
the name of method m itself. Basically, we only keep tokens
referring to identifiers, excluding the name of m, and non-
primitive types, which are Java keywords. This is one of the
main differences with respect to NATURALIZE.

Indeed, while NATURALIZE uses all textual tokens in the
n-gram language model (including, e.g., Java keywords), we
only focus on tokens containing lexical information. We ex-
pect sequences of only lexical tokens to better capture and
characterize the context in which a given identifier is used.

Listing 1: Example of method analyzed

public void printUser(int uid) {
String q = ”"SELECT._*_.WHERE_user_id.=.” + uid;
User user = runQuery(q);
System.out. println (user);
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The list of identifiers extracted from printUser includes:
uid, String, q, uid, User, user, runQuery, q, System, out,
println, user. Again, our conjecture is that such a list of
tokens captures the context—referred to method printUser—
where an identifier (e.g., q) is used. After obtaining the iden-
tifier list, we extract n-grams from it such that the language
model can use them to estimate the probability that a specific
identifier should be used in a given context.

Lin et al. [24] found that the n-gram language model
achieves the best accuracy in supporting code completion tasks
when setting n = 3. The same value was used in the original
work by Hindle et al. [25] proposing the usage of the language
model for code completion. Therefore, we build 3-grams
from the extracted list of tokens. In our running example,
ten 3-grams will be extracted, including: (uid, String, q),
(String, q, uid), (q, uid, User), (uid, User, user), efc.

Generating candidate rename refactoring. For each vari-
able/parameter identifier in m (in the case of printUser:
uid, q, and user), LEAR looks for its possible renaming
by exploiting the vocabulary built in the first step. Given an
identifier under analysis ¢d, LEAR extracts from the vocabulary
all the identifiers ids; which meet the following constraints:

e (:id is used to name a variable/parameter of the same
type as the one referred by id. For example, if ¢d is a
parameter of type int, ¢ds; must be used at least once as
an int variable/parameter;

e (C5: ids is not used in m to name any other variables/-
parameters. Indeed, in such a circumstance, it would not
be possible to rename id in ¢d, in any case;

e C5: ids is not used to name any attribute of the class
C}, implementing m nor in any class C} extends, for the
same reason explained in Cs.

The constraint checking not considered in NATURALIZE rep-
resents another difference between LEAR and NATURALIZE.

We refer to the list of valid identifiers fulfilling the above
criteria as V1;4. Then, LEAR uses a customized version of the
3-gram language model to compute the probability that each
identifier ids in V1,4 appears, instead of id, in all the 3-grams
of m including id.

Let T'P;4 be the set of 3-gram patterns containing at least
once id, and tp;q—iq, be a 3-gram obtained from a pattern
tp;a € TP;q where the variable id is replaced with a valid
identifier ids; € VI;4. We define the probability of a given
substitution to a variable as:

count(tpid—id,)
veVTiy count(tPid—sy)

P(tpiaz—ia,) = 5

When the pattern is in the form of (idy, ids, id), the probability
of a substitution corresponds to the classic probability as
computed by a 3-gram language model, that is:

P((idy, idy, id)iaia,) = P(ids|idy, idy)
_ count((idy, ida, ids))
count({idy,ids))

To better understand this core step of LEAR, let us discuss
what happens in our running example when LEAR looks for

possible renaming of the uid parameter identifier. The 3-
grams of printUser containing uid are: (uid, String, q),
(String, q, uid), (q, uid, User), and (uid, User, user).
Assume that the list of identifiers VI;; (i.e., the list of
valid alternative identifiers for uid) includes userId and
localCount. LEAR uses the language model to compute the
probability that userId occurs in each of the 3-grams of
printUser containing uid. For example, the probability of
observing userId in the 3-gram (q, uid, User) is:

count(q,userld,User)

p(q,userId,User) = count(q. y, User)
where count(q,userId,User) is the number of occur-
rences of the 3-gram (q,userId,User) in the system, and
count(q,y,User) is the number of occurrences of the corre-
sponding 3-gram, where y represents any possible identifier
(including userId itself). Note that the count function only
considers n-grams where ids has the same type as id. Also, it
does not take into account n-grams extracted from the method
under analysis. This is done to avoid favoring the probability of
the current identifier name used in the method under analysis
as compared to the probability of other identifiers.

How the probability for a given identifier to appear in a n-
gram is computed also differentiates LEAR from NATURALIZE.
In the example reported above, NATURALIZE in fact computes
the probability of observing User following (q, userId):

(q, 14,U
p(User|q,userIld) = count(q, user ser)

count(q,userId)

The two probabilities (i.e., the one computed by LEAR and by
NATURALIZE), while based on similar intuitions, could clearly
differ. Our probability function is adapted from the standard
language model (i.e., the one used by NATURALIZE) in an
attempt to better capture the context in which an identifier
is used. This can be noticed in the way our denominator is
defined: it keeps intact that identifiers’ context in which we
are considering injecting userId instead of uid.

The average probability across all these 3-grams is consid-
ered as the probability of id, being used instead of id in m.

This process results in a ranked list of VI;; identifiers hav-
ing on top the identifier with the highest average probability
of appearing in all the 3-grams of m as a replacement (i.e.,
rename) of id. We refer to this top-ranked identifier as T5.

Finally, LEAR uses the same procedure to compute the
average probability that the identifier id itself appears in
the 3-grams where it currently is. If the 7;; has the higher
probability of appearing in the 3-grams is than id, a candidate
rename refactoring has been found (i.e., rename id in T;4).
Otherwise, no rename refactoring is needed.

Assessing the confidence and the reliability of the can-
didate recommendations. LEAR uses two indicators acting
as proxies for the confidence and the reliability of the recom-
mended refactoring. Given a rename refactoring recommenda-
tion id — Tj4 in the method m, the confidence indicator is
the average probability of T;4 to occur instead of id in the
3-grams of m where id appears.



We refer to this indicator as Cp, and it is defined in the [0,
1] interval. The higher C), the higher the confidence of the
recommendation. We study how C), influences the quality of
the recommendations generated by LEAR in the following.

The “reliability” indicator, named C, is the number of dis-
tinct 3-grams used by the language model in the computation
of C}, for a given recommendation id — T34 in the method m.
Given (idy,idg, id) a 3-gram where id appears in m, we count
the number of 3-grams in the system in the form (idy, ids, x),
where x can be any possible identifier. This is done for all the
3-grams of m including ¢d, and the sum of all computed values
is represented by C.. The conjecture is that the higher C,, the
higher is the reliability of the C, computation. Indeed, the
higher C., the higher the number of 3-grams from which the
language model learned that T;4 is a good substitution for ¢d.
C. is unbounded on top. We study what is the minimum value
of C. allowing reliable recommendations in the following.

Note that while NATURALIZE does also provide a scoring
function based on the probability derived by the n-gram lan-
guage model to indicate the confidence of the recommendation
(i.e., the equivalent of our C,, indicator), it does not implement
a “reliability” indicator corresponding to C..

Tuning of the C. and C), indicators. To assess the
influence of the C,, (confidence) and C.. (reliability) indicators
on the quality of the rename refactorings generated by LEAR,
we conducted a study on one system, named SMOS. We
asked one of the SMOS developers (having nowadays six
years of industrial experience) to assess the meaningfulness of
the LEAR recommendations. SMOS is a Java web application
developed by a team of Master students, and composed by
121 classes for a total of ~23 KLOC. We used the SMOS
system only for the tuning of the indicators C), and C,, i.e.,
to identify minimum values needed to receive meaningful
recommendations for both of them. SMOS is not used in the
actual evaluation of our approach, presented in Section

We ran LEAR on the whole system and asked the participant
to analyze the 146 rename refactoring generated by LEAR and
to answer, for each of them, the question Would you apply
the proposed refactoring?, assigning a score on a three-point
Likert scale: 1 (yes), 2 (maybe), and 3 (no). We clarified with
the participant the meaning of the three possible answers:

1 (yes) must be interpreted as “the recommended renaming
is meaningful and should be applied”, i.e., the recom-
mended identifier name is better than the current one;

2 (maybe) must be interpreted as “the recommended re-
naming is meaningful, but should not be applied”, i.e.,
the recommended identifier is a valid alternative to the
one currently used, but is not a better choice;

3 (no) must be interpreted as “the recommended rename
refactoring is not meaningful”.

The participant answered yes to 18 (12%) of the recom-
mended refactoring, maybe to 15, and no to 113. This negative
trend is expected, considering the fact that we asked the par-
ticipant to assess the quality of the recommended refactoring
independently from the values of the C), and the C.. indicators.
That is, given the goal of this study, also recommendations

TABLE I: Five rename refactoring tagged with a yes

Original name Rename Cp Ce.
mg managerUser 1.00 146
e invalidValueException 0.90 356
buf searchBuffer 0.89 5
result classroom 0.87 15
managercourseOfStudy ~ managerCourseOfStudy  0.67 12

having very low values for both indicators (e.g., C}, = 0.1 and
C. = 1) were inspected, despite we do not expect them to
be meaningful. Table [[] reports five representative examples of
rename refactoring tagged with a yes by the developer.

By inspecting the assessment performed by the participant,
the first thing we noticed is that recommendations having
C. < 5 (i.e., less than five distinct 3-grams have been used by
the language model to learn the recommended rename refac-
toring) are generally unreliable, and should not be considered.
Indeed, out of the 28 rename refactoring having C. < 5, one
(3%) was accepted (answer “yes”) by the developer and three
(10%) were classified as maybe, despite the fact that 22 of
them had C, = 1.0 (i.e., the highest possible confidence for
the generated recommendation). Thus, when C. < 5 even
recommendations having a very high confidence are simply
not reliable. When C,. > 5, we noticed that its influence on the
quality of the recommended renames is limited, i.e., no other
clear trend in the quality of the recommended refactoring can
be observed for different values of C.. Thus, we excluded the
28 refactoring recommendations having C. < 5 and studied
the role played by C), in the remaining 118 recommendations
(17 yes, 12 maybe, and 89 no).

Fig. [T]reports the recall and precision levels of our approach
when excluding the recommendations having C), < t, with
t varying between 1.0 and 0.1 at steps of 0.1. Note that in
the computation of the recall and precision we considered
the 29 recommendations accepted with a yes (17) or assessed
as meaningful with a maybe (12) as correct (i.e., the maybe
answers are equated to the yes answers, and considered
correct). This choice was dictated by the fact that we see the
meaningful recommendations tagged with maybe as valuable
for the developer, since she can then decide whether the
alternative identifier name provided by our approach is valid
or not. For a given value of ¢, the recall is computed as the
number of correct recommendations having C}, > ¢ divided
by 29 (the number of correct recommendations). This is an
“approximation” of the real recall since we do not know
the actual number of correct renamings that are needed in
SMOS. In other words, if a correct rename refactoring was not
recommended by LEAR, it was not evaluated by the participant
and thus is not considered in the computation of the recall.

The precision is computed as the number of correct rec-
ommendations having C,, > t divided by the number of
recommendations having C;, > t. For example, when consid-
ering recommendations having C, = 1.0, we only have three
recommended renames, two of which have been accepted by
the developer. This results in a recall of 0.07 (2/29) and a
precision of 0.67 (2/3)—see Fig. [1]
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Fig. 1: Precision and recall of the LEAR recommendations
when varying C),

Looking at Fig. [I] we can see that both recall and precision
increase moving from C, = 1.0 to C, = 0.8, reaching
recall=0.42 (12/29) and precision=0.92 (12/13). This means
that only one among the top-13 recommendations ranked by
C)p has been considered as not meaningful by the developer.
Moving towards lower values of C),, the recall increases
thanks to the additional recommendations considered, while
the precision decreases, indicating that the quality of the
generated recommendations tend to decrease with lower C),
values (i.e., there are higher chances of receiving a mean-
ingless recommendation for low values of Ci,). It is quite
clear in Fig. [I] that the likelihood of receiving good rename
recommendations when C}, < 0.5 is very low.

Based on the results of the performed tuning, we modified
our tool in order to generate refactoring recommendations
only when C;, > 5 and C, > 0.5. This parameter setting
will be used for all the projects subject of our evaluation,
i.e.,, no project-specific tuning will be performed. In the
evaluation reported in Section we will further study the
meaningfulness of the generated recommendations of rename
refactorings for different values of C), in the significant range,
i.e., varying between 0.5 and 1.0.

IV. EVALUATION

This section presents the design and the results of the
empirical study we carried out to compare the three previously
introduced approaches for rename refactoring.

A. Study Design

The goal of the study is to assess the meaningfulness
of the rename refactorings recommended by CA-RENAMING,
NATURALIZE, and LEAR.

The perspective of the study is of researchers who want to
investigate the applicability of approaches based on static code
analysis (i.e., CA-RENAMING) and on the n-gram language
model (i.e., NATURALIZE and LEAR) to recommend rename
refactorings. The context is represented by objects, i.e., five
software projects on which we ran the three experimented
tools to generate recommendations for rename refactorings,

and subjects, i.e., seven developers of the objects assessing
the meaningfulness of the recommended rename refactorings.

To limit the number of refactoring recommendations to be
evaluated by the developers, we applied the following “filtering
policy” to the experimented techniques:

o LEAR: Given the results of the tuning of the C}, and
the C, indicators, we only consider the recommendations
having C. > 5 and C, > 0.50.

e NATURALIZE: We used the original implementation made
available by the authors with the recommended n = 5 in
the n-gram language model. To limit the number of rec-
ommendations, and to apply a similar filter with respect to
the one used in LEAR, we excluded all recommendations
having a probability lower than 0.5. Moreover, since
NATURALIZE is also able to recommend renamings for
identifiers used for method names (as opposed to the
other two competitive approaches), we removed these
recommendations, in order to have a fair comparison.

e CA-RENAMING: No filtering of the recommendations was
applied (i.e., all of them were considered). This is due
to the fact that, as it will be shown, CA-RENAMING
generates a much lower number of recommendations as
compared to the other two techniques.

Despite these filters, our study involves a total of 922 man-
ual evaluations of recommendations for rename refactoring.
Note also that no comparison will be performed in terms
of running time (i.e., the time needed by the techniques to
generate the recommendations), since none of them requires
more than a few minutes (<5) per system.

1) Research Questions and Context: Our study is steered
by the following research question:

e RQ; Are the rename refactoring recommendations gen-
erated by approaches exploiting static analysis and NLP
meaningful from a developer’s point of view?

The object systems taken into account are five Java sys-
tems developed and actively maintained at the University
of Molise in the context of research projects or as part of
its IT infrastructure. As subjects, we involved seven of the
developers maintaining these systems. Table shows size
attributes (number of classes and LOCs) of the five systems,
the number of developers actively working on them (column
“Developers”), the number of developers we were able to
involve in our study (column “Participants”), the average
experience of the involved participants, and their occupatioﬂ

As it can be seen we involved a mix of professional
developers and Computer Science students at different levels
(Bachelor, Master, and PhD). All the participants have at least
three years of experience in Java and they are directly involved
in the development and maintenance of the object systems.

Therio is a Web application developed and maintained by
Master and PhD students. It is currently used for research
purposes to collect data from researchers from all around
the world. LifeMipp is a Web application developed and
maintained by a professional developer and a PhD student.

3Here “Professional” indicates a developer working in industry.



TABLE II: Context of the study (systems and participants)

System \ Type # of Classes LOCs Developers \ Participants  Experience (mean) Occupation

Therio Web App 79 13K 2 1 7+ years  PhD Student

LifeMipp Web App 72 7K 2 2 7+ years  Professional; PhD Student
MyUnimolAndroid | Android App 96 27K 4 1 5+ years  Professional
MyUnimolServices | Web Services 100 8K 7 2 3+ years  Bachelor students

Ocelot Desktop App 182 22K 2 1 7+ years  PhD student

LifeMipp has been developed in the context of an Euro-
pean project and it is currently used by a wide user base.
MyUnimolAndroid is an Android application developed and
maintained by students and professional developers. Such
an app is available on the Google PlayStore, it has been
downloaded more than 1,000 times, and it is mostly used
by students and faculties. MyUnimolServices is an open-
source software developed and maintained by students and
professional developers. Such a system is the back-end of
the MyUnimolAndroid app. Finally, Ocelot is a Java desktop
application developed and maintained by PhD students. At the
moment, it is used by researchers in an academic context.

2) Data Collection and Analysis: We run the three exper-
imented approaches (i.e., CA-RENAMING, NATURALIZE, and
LEAR) on each of the five systems to recommend rename refac-
toring operations. Given R the set of refactoring recommended
by a given technique on system P, we asked P’s developers
involved in our study to assess the meaningfulness of each of
the recommended refactorings. We did not disclose which tool
generated the recommendations to the developers. We adopted
the same question/answers template previously presented for
the tuning of the LEAR’s C. and C,, indicators. In particular,
we asked the developers the question: Would you apply the
proposed refactoring? with possible answers on a three-point
Likert scale: 1 (yes), 2 (maybe), and 3 (no). Again, we clarified
the meaning of these three possible answers.

Overall, participants assessed the meaningfulness of 725
rename refactorings, 66 recommended by CA-RENAMING, 357
by NATURALIZE, and 302 by LEAR across the five systems.
Considering the number of participants involved (e.g., two par-
ticipants evaluated independently the recommendations gener-
ated for LifeMipp), this accounts for a total of 922 refactoring
evaluations, making our study the largest empirical evaluation
of rename refactoring tools performed with developers having
first-hand experience on the object systems.

To answer our research question we report, for the three
experimented techniques, the number of rename refactoring
recommendations tagged with yes, maybe and no. We also
report the precision of each technique computed in two dif-
ferent variants. In particular, given R the set of refactorings
recommended by an experimented technique, we compute:

e Precyes, computed as the number of recommendations
in R tagged with a yes divided by the total number
of recommendations in R. This version of the precision
considers as meaningful only the recommendations that
the developers would actually implement.

e Precyesumaybe, computed as the number of recommen-

dations in R tagged with a yes or with a maybe divided
by the total number of recommendations in R. This
version of the precision considers as meaningful also the
recommendations indicated by the developers as a valid
alternative to the original variable name but not calling
for a refactoring operation.

Due to lack of space, we discuss the results aggregated by
technique (i.e., by looking at the overall performance across
all systems and as assessed by all participants). The tools and
raw data are available in our replication package [26].

Finally, we analyze the complementarity of the three tech-
niques by computing, for each pair of techniques (T}, T}), the
following overlap metrics:

|correctr, N correctr; |

correctrnt; = |correctr, U correctr,|
B |correctr, \ correctr, |

correctrz, |correctr, U correctr; |
|correctr, \ correctr, |

correctr\r, = 1 .

|correctr, U correctr; |

The formulas above use the following metrics:

e correctr, represents the set of meaningful refactoring

operations recommended by technique T7;

o correctr,nr; measures the overlap between the set of

meaningful refactorings recommended by 7; and T};
e correctr,\r, measures the meaningful refactoring oper-
ations recommended by 7T; only and missed by T}.

The latter metric provides an indication on how a rename
refactoring tool contributes to enrich the set of meaningful
refactorings identified by another tool. Such an analysis is par-
ticularly interesting for techniques relying on totally different
strategies (e.g., static code analysis vs NLP) to identify differ-
ent rename refactoring opportunities. Due to space limitation,
we only report the three overlap metrics when considering both
the recommendations tagged with yes and maybe as correct.
The overlap metrics obtained when only considering the “yes
recommendations” as meaningful are available in [26].

B. Results

Table [III] reports the answers provided by the developers to
the question “Would you apply the proposed rename refac-
toring?”. Results are presented by approach, starting with the
technique based on static code analysis (i.e., CA-RENAMING
[6]) followed by four different variations of NATURALIZE and
of LEAR using different thresholds for the confidence of the
generated recommendations.



TABLE III: Participants’ answers to the question Would you apply the proposed rename refactoring?

# recomm. # yes

# maybe # no

Approach Confidence Precyecsumaybe  Precyes
overall mean overall mean overall mean overall mean

CA-RENAMING  N/A 80 11.43 21 3.00 30 4.29 29 4.14 63.75% 26.25%
NATURALIZE >=0.5 459  65.57 76  10.86 99 14.14 284 40.57 38.13% 16.56%
NATURALIZE >=0.6 319 4557 59 8.43 67 9.57 193 27.57 39.50% 18.50%
NATURALIZE >=0.7 185 26.43 35 5.00 43 6.14 107 15.29 42.16% 18.92%
NATURALIZE >=0.8 88  12.57 20 2.86 21 3.00 47 6.71 46.59% 22.73%
LEAR >=0.5 380 54.29 111 15.86 140  20.00 129 1843 66.05% 29.21%
LEAR >=0.6 296 4229 99 14.14 112 16.00 85 12.14 71.28% 33.45%
LEAR >=0.7 186  26.57 67 9.57 69 9.86 50 7.14 73.12% 36.02%
LEAR >=0.8 130 18.57 55 7.86 50 7.14 25 3.57 80.77% 42.31%

Table does also report the Precyes and Precyesumaybe
computed as described in Section

General Trends. Before discussing in detail the perfor-
mance of the experimented techniques, it is worthwhile to
comment on some general trend reported in Table First
of all, the approaches based on NLP generate more recom-
mendations than CA-RENAMING. This holds as well when
considering the highest confidence threshold we experimented
with (i.e., 0.8). Indeed, in this case LEAR generates a total of
130 rename refactorings (on average 18.57 per system) and
NATURALIZE 88 (12.57 on average), as compared to the 80
recommended by CA-RENAMING (11.43 on average).

Another consideration is that LEAR recommends a higher
number of refactorings that are accepted by the developers
with respect to NATURALIZE and to CA-RENAMING. Overall,
111 rename refactorings recommended by LEAR have been
fully accepted with a yes, as compared to the 76 by NATU-
RALIZE and 21 by CA-RENAMING.

Also, the higher number of accepted refactorings does not
result in a lower precision. Indeed, LEAR does also achieve
a higher Precy., with respect to CA-RENAMING (29.21%
vs 26.25%) and to NATURALIZE (16.56%). The precision of
NATURALIZE is negatively influenced by the extremely high
number of recommendations it generates when considering all
those having confidence > 0.5 (i.e., 459 recommendations).

Finally, LEAR’s and NATURALIZE’s precision is strongly
influenced by the chosen confidence threshold. The values on
Table [III] show an evident impact of the confidence threshold
on Precyes and Precyesumaybe for both the approaches.
Indeed, going to the least to the most conservative configu-
ration for the confidence level, Precyesumaybe increases by
~14% (from 66.05% to 80.77%) for LEAR and by ~38%
for NATURALIZE (from 38.13% to 76.14%), while Precyes
increases by ~13% for LEAR (from 29.21% to 42.31%) and
by ~6% for NATURALIZE (from 16.56% to 22.73%).

These results indicate one important possibility offered by
these two approaches based on a similar underlying model:
Depending on the time budget developers want to invest, they
can decide whether to have a higher or a lower number of
recommendations, being informed of the fact that the most
restrictive threshold is likely to just generate very few false
positives, but also to potentially miss some good suggestions.

Per-project analysis. Table [[V|reports examples of recom-
mendations generated by the three approaches and tagged with
yes, maybe, and no.

TABLE IV: Refactorings tagged with yes, maybe, and no

System Original name  Rename Conf. Tag
o LifeMipp i insect N/A yes
£ Therio pk idCollection N/A yes
E MyUnimolAndroid  data result N/A  maybe
2 Ocelot hash md5final N/A  maybe
< Ocelot navigator this N/A no
© MyUnimolAndroid ~ fullname fullnameOk N/A no
o Ocelot callString macro 0.92 yes
8 MyUnimolAndroid  factory inflater 0.75 yes
<  Ocelot declaration currentDeclaration 0.79  maybe
=3 . .
2 MyUnimolServices  moduleName name 0.69  maybe
< LifeMipp species t 0.64 no
MyUnimolServices  username token 0.91 no
LifeMipp image photo 1.00 yes
MyUnimolServices  careerId pCareerId 0.63 yes
% Ocelot type realType 091  maybe
2 LifeMipp file fileFullName 0.67  maybe
Therio pUsername pName 0.59 no
MyUnimolAndroid  info o 1.00 no

Moving to the assessment performed by participants on each
project (data available in our replication package [26]), we
found that the accuracy of the recommendations generated by
the three tools substantially varies across the subject systems.

For example, on the LifeMipp project, CA-RENAMING is
able to achieve very high values of precision, substantially
better than the ones achieved by the approaches based on
NLP. The refactoring recommendations for the LifeMipp
project have been independently evaluated by two developers.
Both of them agreed on the meaningfulness of all eight
recommendations generated by CA-RENAMING. Indeed, the
first developer would accept all of them, while the second
tagged five recommendations with yes and three with maybe.
NATURALIZE and LEAR, instead, while able to recommend a
higher number of yes and maybe recommendations as opposed
to CA-RENAMING (on average 19 for NATURALIZE and 22 for
LEAR vs the 8 for CA-RENAMING), present a high price to
pay in terms of false positives to discard (O false positives for
CA-RENAMING as compared to 49 for NATURALIZE and 19
for LEAR). Such a cost is strongly mitigated when increasing
the confidence threshold. Indeed, when only considering rec-
ommendations having confidence > 0.8, the number of false
positives drops to 1 (first developer) or O (second developer)
for LEAR and to 8 or 6 for NATURALIZE.



However, LEAR and NATURALIZE still keep an advantage in
terms of number of yes and maybe generated recommendations
(13 and 14—depending on the developer—for LEAR, and 12,
for both developers, for NATURALIZE). A similar trend has
also been observed for MyUnimolServices.

When run on MyUnimolAndroid, CA-RENAMING only rec-
ommends three rename refactorings, two tagged with a maybe
and one discarded (no). NATURALIZE generates 65 recommen-
dations, with nine yes, 14 maybe, and 42 no. Finally, LEAR
generates 35 suggestions, with six yes, 12 maybe, and 17 no.

This is the only system in which we did not observe a clear
trend between the quality of the refactoring recommended by
LEAR and the value used for the C), threshold. Indeed, the
precision of our approach is not increasing with the increase of
the C), value. This is due to the fact that the developer involved
in the evaluation of the refactoring for the MyUnimolAndroid
rejected with a no seven recommendations having C}, > 0.8.

We asked the developer for further comments to check
what went “wrong” for this specific system, and in partic-
ular we asked to comment on each of these seven cases.
Some of the explanations seemed to indicate more a maybe
recommendation rather than the assigned no. For example,
our approach recommended with C,, = 0.9 and C, = 54
the renaming activity — navigationDrawer. The developer
explained that the activity identifier refers to an object of
FragmentActivity that is casted as a NavigationDrawer
and, for this reason, he prefers to keep the activity name
rather than the recommended one. Another false positive
indicated by the developer was renaming info — o, where
info is a method parameter of type Object. LEAR learned
from the MyUnimolAndroid’s trigrams that the developers
tend to name a parameter of type Object with o. This is
especially true in the implementation of equals methods.
Thus, while the renaming would have been consistent with
what is present in the system, the developer preferred to keep
the original name as being “more descriptive”, rejecting the
recommendation. MyUnimolAndroid is also the only system
in which NATURALIZE achieves a higher precision than LEAR
when considering the most restrictive confidence (i.e., > 0.8).

Finally, on the Therio and on the Ocelot projects, LEAR
substantially outperforms the two competitive approaches.
On Therio, CA-RENAMING achieves Precy.s = 0.33 and
Precyesumaybe = 0.47, as compared to the Precyes = 0.37
and Precyesumaybe = 0.74 achieved by LEAR when consid-
ering only recommendations having C}, > 0.6. LEAR also
generates a much higher number of yes (35 vs 5) and maybe
(13 vs 2) recommendations. Examples of recommendations
generated by LEAR and accepted by the developers include pk
— idTaxon and 0 — occurrences, while an example of rejected
recommendation is pUsername — pName. NATURALIZE also
achieves its best performance on Therio when considering all
recommendations having confidence > 0.6 (Precyes = 0.35
and Precyesumaybe = 0.74), but with a lower number of yes
(23) and maybe (8) recommendations with respect to LEAR. A
similar trend is also observed on Ocelot, where LEAR is able
to recommend 89 renamings with a Precyecsumaybe = 0.93.

Overlap Metrics Analysis. Table [V] reports the three over-
lap metrics between the experimented techniques.

TABLE V: Overlap metrics

T; T; ‘ correctr;ar;

1.00%
0.00%
4.16%

(:or7'ectTl\TJ correctq—] \T;

82.94%
77.43%
38.63%

CA-RENAMING
CA-RENAMING
LEAR

LEAR
NATURALIZE
NATURALIZE

16.05%
22.57%
57.21%

The overlap in terms of meaningful recommendations pro-
vided by the different tools is extremely low; 1% between CA-
RENAMING and LEAR, 0% between CA-RENAMING and NAT-
URALIZE, and 4% between LEAR and NATURALIZE. While the
low overlap between the techniques using static code analysis
and NLP is somehow expected, the 4% overlap observed
between LEAR and NATURALIZE is surprising considering the
fact that LEAR is inspired by the core idea behind NATU-
RALIZE. This means that the differences between the two
techniques described in Section [[II| (e.g., only considering the
lexical tokens in the language model as opposed to using all to-
kens) have a strong impact on the generated recommendations.
While this was already clear by the different performance
provided by the two approaches (see Table [I), it is even
more evident from Table [V]

LEAR is able to recommend 82.94% of meaningful renam-
ings that are not identified by CA-RENAMING, and 57.21%
that are not recommended by NATURALIZE. However, there
is also a high percentage of meaningful rename refactorings
recommended by CA-RENAMING (16.05%) and NATURALIZE
(38.63%) but not identified by LEAR. This confirms the very
high complementarity of the different techniques, paving the
way to novel rename refactoring approaches based on their
combination, which will be investigated in our future work.

V. THREATS TO VALIDITY

Threats to construct validity are mainly related to how
we assessed the developers’ perception of the refactoring
meaningfulness. We asked developers to express on a three-
point Likert scale the meaningfulness of each recommended
refactoring making sure to carefully explain the meaning of
each possible answer from a practical point of view.

Threats to internal validity are represented, first of all, by
the calibration of the LEAR confidence C), and C. indicators.
We performed the calibration of these indicators on one project
(SMOS) not used in the LEAR’s evaluation, by computing
the recall vs precision curve for different possible values
of the C), indicator. This was not really needed for the C.
indicator, for which we just observed the unreliability of
the recommendations having C. < 5. Concerning the other
approaches, for the NATURALIZE’s n-gram model parameter
we adopted the one used by its authors (i.e., n = 5) and we
relied on their implementation of the approach. To limit the
number of refactoring recommendations, we excluded the ones
having a probability lower than 0.5. This choice certainly does
not penalize NATURALIZE, since we are only considering the
best recommendations it generates. As for CA-RENAMING, we
used our own implementation (available in [26]).



Threats to external validity are related to the set of chosen
objects and to the pool of participants. Concerning the objects,
we are aware that our study is based on refactorings recom-
mended on five Java systems only and that the considered
systems, while not trivial, are generally of small-medium size
(between 7 and 27 KLOC). Also, we were only able to involve
in our study seven developers. Still, as previously said, (i) we
preferred to limit our study to developers having a first-hand
experience with the object systems, rather than inviting also
external developers to take part in our study, and (ii) despite
the limited number of systems and developers, our results are
still based on a total of 922 manual inspections performed to
assess the quality of the refactorings.

VI. CONCLUSION

We assessed the meaningfulness of recommendations gen-
erated by three approaches—two existing in the literature (i.e.,
CA-RENAMING [6] and NATURALIZE [7]) and one presented
in this paper (i.e, LEAR)—promoting a consistent use of
identifiers in code. The results of our study highlight that:

1. Overall, LEAR achieves a higher precision, and it is
able to recommend a higher number of meaningful refactoring
operations with respect to the competitive techniques.

2. While being the best performing approach, LEAR still
generates a high number of false positives, especially when
just considering as meaningful the recommendations tagged
with a yes by the developers (i.e., the ones they would
actually implement). This means that there is large room for
improvement in state-of-the-art tools for rename refactoring.

3. The experimented approaches have unstable performance
across the different systems. Indeed, even if LEAR is, overall,
the approach providing the most accurate recommendations, it
is not the clear winner on all the object systems. This indicates
that there are peculiarities of the software systems that can
influence the performance of the three techniques.

The above observations will drive our research agenda,
including: (i) revising our approach to exploit more informa-
tion (e.g., data flow graph) to increase its performance, and
(i1) studying the characteristics of the software systems that
influence the accuracy of the rename refactoring tools.
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