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ABSTRACT
Sentiment analysis has been applied to various software engineer-
ing (SE) tasks, such as evaluating app reviews or analyzing develop-
ers’ emotions in commit messages. Studies indicate that sentiment
analysis tools provide unreliable results when used out-of-the-box,
since they are not designed to process SE datasets. The silver bul-
let for a successful application of sentiment analysis tools to SE
datasets might be their customization to the speci�c usage context.

We describe our experience in building a software library recom-
mender exploiting developers’ opinions mined from Stack Over�ow.
To reach our goal, we retrained—on a set of 40k manually labeled
sentences/words extracted from Stack Over�ow—a state-of-the-art
sentiment analysis tool exploiting deep learning. Despite such an
e�ort- and time-consuming training process, the results were nega-
tive. We changed our focus and performed a thorough investigation
of the accuracy of commonly used tools to identify the sentiment of
SE related texts. Meanwhile, we also studied the impact of di�erent
datasets on tool performance. Our results should warn the research
community about the strong limitations of current sentiment anal-
ysis tools.
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1 INTRODUCTION
Recent years have seen the rise of techniques and tools to automati-
cally mine opinions from online sources [26]. The main application
of these techniques is the identi�cation of the mood and feelings
expressed in textual reviews by customers (e.g., to summarize the
viewers’ judgment of a movie [32]). Sentiment analysis [26] is a
frequently used opinion mining technique. Its goal is to identify
a�ective states and subjective opinions reported in sentences. In
its basic usage scenario, sentiment analysis is used to classify cus-
tomers’ written opinions as negative, neutral, or positive.

The software engineering (SE) community has adopted senti-
ment analysis tools for various purposes. It has been used to assess
the polarity of apps’ reviews (e.g., Goul et al. [6] and Panichella et al.
[27]), and to identify sentences expressing negative opinions about
APIs [38]. Tourani et al. [35] used sentiment analysis to identify
distress or happiness in a development team, while Garcia et al.
[5] found that developers expressing strong positive or negative
emotions in issue trackers are more likely to become inactive in the
open source projects they contribute. Ortu et al. [24] studied the
impact of sentiment expressed in issues’ comments and the issue
resolution time, while Sinha et al. [31] investigated the sentiment
of developers’ commits.

Most prior works leverage sentiment analysis tools not designed
to work on software-related textual documents. This “out-of-the-
box” usage has been criticized due to the poor accuracy these tools
achieved when applied in a context di�erent from the one for which
they have been designed and/or trained [16, 23, 35]. For example, the
Stanford CoreNLP [32] opinion miner has been trained on movie
reviews. In essence, the silver bullet to make sentiment analysis
successful when applied on software engineering datasets might be
their customization to the speci�c context.

Thus, the recent trend is to customize existing sentiment analysis
tools to properly work on software engineering datasets [15, 36].
The most widely used tool in the SE community is SentiStrength
[34]. SentiStrength assesses the sentiment of a sentence by look-
ing at the single words the sentence is composed of, that is, it assigns
positive/negative scores to the words and then sums up these scores
to obtain an overall sentiment for the sentence. SentiStrength can
be customized to provide the sentiment for domain-speci�c terms.
For instance, Islam and Zibran [15] developed SentiStrength − SE,
which improved identi�cation performance for SE-related texts.

https://doi.org/10.1145/3180155.3180195
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Inspired by these works, we started a research project to design
and implement an approach to recommend software libraries to
developers. The idea was to assess the quality of software libraries
exploiting crowdsourced knowledge by mining developers’ opin-
ions on Stack Over�ow. One key component needed to succeed was
a reliable sentiment analysis tool (e.g., to capture positive/negative
developers’ opinions about the usability of a library). Given the
warning raised by previous work in our �eld [16, 23, 35] there
was the need for training and customizing the sentiment analysis
tool to the Stack Over�ow context. Also, looking at the opinion
mining literature, we decided to adopt a state-of-the-art approach
based on a Recursive Neural Network (RNN), able to compute the
sentiment of a sentence not by just summing up the sentiment of
positive/negative terms, but by grammatically analyzing the way
words compose the meaning of a sentence [32].

We built a training set by manually assigning a sentiment score
to a total of ∼40k sentences/words extracted from Stack Over�ow.
Despite the considerable manual e�ort, the empirical evaluation we
performed led to negative results, with unacceptable accuracy lev-
els in classifying positive/negative opinions. Given this, we started
a thorough empirical investigation aimed at assessing the actual
performance of sentiment analysis tools when applied on software
engineering datasets with the goal of identifying a technique able
to provide acceptable results. We experimented with all major tech-
niques used in our community, by using them out-of-the-box as well
as with customization designed to work in the software engineer-
ing context (e.g., SentiStrength − SE [15]). Also, we considered
three di�erent software engineering datasets: (i) our manually built
dataset of Stack Over�ow sentences, (ii) comments left on issue
trackers [25], and (iii) reviews of mobile apps [37].

Our results show that none of the state-of-the-art tools provides
a precise and reliable assessment of the sentiments expressed in
the manually labeled Stack Over�ow dataset we built (e.g., all the
approaches achieve recall and precision lower than 40% on negative
sentences). Results are marginally better in the app reviews and in
the issue tracker datasets, which however represent simpler usage
scenarios for sentiment analysis tools.

The goal of our paper is to share with the SE research community
our negative �ndings, showing the current di�culties in applying
sentiment analysis tools to software-related datasets, despite major
e�orts in tailoring them to the context of interest. Our results should
also warn researchers to not simply use a (customized) sentiment
analysis tool assuming that it provides a reliable assessment of
the sentiments expressed in sentences, but to carefully evaluate its
performance. Finally, we share our large training dataset as well as
all the tools used in our experiments and the achieved results [18],
to foster replications and advances in this novel �eld.

Structure of the paper. Section 2 presents the available senti-
ment analysis tools, and discusses sentiment analysis applications
and studies in SE. Section 3 presents our original research plan.
Section 4 reports and discusses the negative results we obtained
when evaluating the sentiment analysis component of our approach.
Section 5 reports the design and results of the study we performed
to assess the performance of sentiment analysis tools on software
engineering datasets, while Section 6 discusses the threats that
could a�ect the validity of our results. Finally, after a discussion of
lessons learned (Section 7), Section 8 concludes the paper.

2 RELATEDWORK
We start by providing an overview of existing sentiment analysis
tools and discuss the applications of these tools in the software
engineering domain. Then, we present recent studies questioning
the e�ectiveness of sentiment analysis when applied on SE-related
datasets. Table 1 reports a summary of the main sentiment analysis
tools used in software engineering application to date.

Table 1: Sentiment analysis tools used for SE applications.

Tool Technique Trained on Used by
SentiStrength Rule-based MySpace [7–11] [15, 22, 24] [31, 33] [36]
NLTK/VADER Rule-based Micro-Blog [30] [28]
Stanford CoreNLP Recurs. Neural Net Movie Reviews [29], our work
EmoText Lexical Features Stack Over�ow, JIRA [2]
SentiStrength − SE SentiStrength JIRA [15]
Uddin and Khomh Sentim. Orientation [13] API Reviews [36]

2.1 Sentiment Analysis Tools
There are several sentiment analysis tools available. Some of them
are commercial tools, such as MeaningCloud1, GetSentiment2, or
WatsonNaturalLanguageUnderstanding3. There are also senti-
ment analysis libraries available in popular machine learning tools,
such as RapidMiner4 or Weka [12], as well as SentiWordNet [1] an
extension of a popular lexicon database (WordNet [20]) for senti-
ment analysis. The sentiment analysis tools applied to software
engineering applications are:
SentiStrength [34] is the most adopted one, originally trained

on MySpace5 comments. The core of SentiStrength is based
on the sentiment word strength list, a collection of 298 positive
and 465 negative terms with an associated positive/negative
strength value. It also leverages a spelling correction algorithm
as well as other word lists such as a booster word list and a negat-
ing word list, for a better sentiment assessment. SentiStrength
assigns a sentiment score to each word composing a sentence
under analysis, and derives the sentence sentiment by sum-
ming up the individual scores. The simple approach behind
SentiStrength makes it easy to customize for a speci�c con-
text by de�ning a list of domain-speci�c terms with associ-
ated sentiment scores. Despite this, only Islam and Zibran [15]
adopted a customized version in software engineering.

NLTK [14] is a lexicon and rule-based sentiment analysis tool hav-
ing VADER (Valence Aware Dictionary and sEntiment Reasoner)
at its core. VADER is speci�cally tuned to social media texts by in-
corporating a “gold-standard” sentiment lexicon extracted from
microblog-like contexts and manually validated by multiple
independent human judges.

Stanford CoreNLP [32] is built on top of a Recursive Neural Net-
work, which di�ers from SentiStrength and NLTK thanks to
its ability to compute the sentiment of a sentence based on
how words compose the meaning of the sentence, and not by
summing up the sentiment of individual words. It has been
trained on movie reviews.

1https://www.meaningcloud.com/developer/sentiment-analysis
2https://getsentiment.3scale.net/
3https://www.ibm.com/watson/services/natural-language-understanding/
4https://rapidminer.com
5https://myspace.com/

https://myspace.com/
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EmoTxt [2]. This is a toolkit for emotion recognition from text that
combines a n-gram approach proposed by Ortu et al. [24] with
lexical features conveying emotions in the input text: emotion
lexicon, politeness, positive and negative sentiment scores (com-
puted by using SentiStrength) and uncertainty. The novelty
of EmoTxt relies on the recognition of speci�c emotions, such
as joy, love, and anger. The tool has been preliminary evaluated
on two datasets mined from Stack Over�ow and JIRA [2].

2.2 Sentiment Analysis & Software Engineering
Sentiment analysis has been applied on di�erent software engi-
neering artifacts, such as technical artifacts (e.g., issues and commit
messages) and crowd-generated content (e.g., forum messages and
users’ reviews), and to support di�erent tasks.

Sentiment is commonly expressed in the developer-written com-
mit messages and issues [17]. Guzman et al. [9] analyzed the senti-
ment of commit comments in GitHub and provided evidence that
projects having more distributed teams tend to have a higher posi-
tive polarity in their emotional content. Additionally, the authors
found that those comments written on Mondays tend to express
more negative emotions. A similar study was conducted by Sinha
et al. [31] on 28,466 projects within a seven year time frame. The
results indicated that a majority of the sentiment was neutral and
that Tuesdays seem to have the most negative sentiment overall.
Also, the authors found a strong positive correlation between the
number of �les changed and the sentiment expressed by the com-
mits the �les were part of. Ortu et al. [24] analyzed the correlation
between the sentiment in 560k JIRA comments and the time to
�x a JIRA issue �nding that positive sentiment expressed in the
issue description might help issue �xing time. Finally, Souza and
Silva [33] analyzed the relation between developers’ sentiment and
builds performed by continuous integration servers. They found
that negative sentiment both a�ects and is a�ected by the result of
the build process.

Analyzing the polarity of apps’ reviews is particularly useful to
support the evolution of mobile applications [3, 6, 11, 27]. Goul et al.
[6] applied a sentiment analysis tool suite to over 5,000 reviews
observing that sentiment analysis can address current bottlenecks
to requirements engineering, but that certain types of reviews tend
to elude algorithmic analysis. Carreño et al. [3] presented a tech-
nique based on Aspect and Sentiment Uni�cation Model (ASUM) to
extract common topics from apps’ reviews and present users’ opin-
ions about those topics. Guzman et al. [8, 11] proposed the use of
SentiStrength to support a similar task. Panichella et al. [27] used
a Naive Bayes classi�er to assign each sentence in users’ reviews
to a “sentiment class” among negative, neutral, and positive. This
is one of the features they use to classify reviews on the basis of
the information they bring (e.g., feature request, problem discovery,
etc.). Sentiment analysis has also been applied to classify tweets
related to software projects [7]. The results of their empirical study
indicated that searching for relevant information is challenging
even if this relevant information can provide valuable input for
software companies and support the continuous evolution of the
applications discussed in these tweets.

As emotions can impact the developer productivity, task comple-
tion quality, and job satisfaction, sentiment analysis has also been

used to detect the psychological state of developers [30]. Guzman
and Bruegge [10] used sentiment analysis to investigate the role of
emotional awareness in development teams, while Gachechiladze
et al. [4] used sentiment analysis to build a �ne-grained model for
anger detection. In addition, the study by Pletea et al. [28] provided
evidence that developers tend to be more negative when discussing
security-related topics. Finally, Garcia et al. [5] analyzed the rela-
tion between the emotions and the activity of contributors in the
Open Source Software project GENTOO. They found that contribu-
tors are more likely to become inactive when they express strong
positive or negative emotions in the issue tracker, or when they
deviate from the expected value of emotions in the mailing list.

Sentiment expressed on Q&A sites such as Stack Over�ow is
also leveraged by researchers to recommend comments on quality,
de�ciencies or scopes for further improvement for source code [29]
or to identify problematic API design features [38].

2.3 Assessment of Sentiment Analysis Tools in
Software Engineering Contexts

While the authors of the above works presented an extensive eval-
uation of the relationship between sentiment and other factors, no
analysis is reported for what concerns the accuracy of the sentiment
classi�cation. Indeed, unsatisfactory results have been reported by
researchers when using these sentiment analysis tools to analyze
texts under software engineering contexts.

Tourani et al. [35] used SentiStrength to extract sentiment
information from user and developer mailing lists of two major
successful and mature projects from Apache software foundation:
Tomcat and Ant. However, they found SentiStrength achieved a
very low precision, i.e., 29.56% for positive sentences and 13.1% for
negative sentences. The low precision is caused by the ambiguous
technical terms and the di�culty of distinguishing extreme posi-
tive/negative texts from neutral ones. Novielli et al. [23] highlighted
and discussed the challenges of employing sentiment analysis tech-
niques to assess the a�ective load of text containing technical lexi-
con, as typical in the social programmer ecosystem.

Jongeling et al. [16] conducted a comparison of four widely used
sentiment analysis tools: SentiStrength, NLTK, Stanford CoreNLP,
and AlchemyAPI. They evaluated their performance on a human
labeled golden set from a developer emotions study by Murgia et al.
[21] and found none of them can provide accurate predictions of
expressed sentiment in the software engineering domain. They also
observed that disagreement exists not only between sentiment anal-
ysis tools and the developers, but also between di�erent sentiment
analysis tools themselves. Their further experiment also con�rmed
that disagreement between these tools can result in contradictory
results when using them to conduct software engineering studies.

The results achieved in these studies call for a sentiment analysis
technique curated with software engineering related data to address
the problem of low accuracy when dealing with technical terms.

Following this suggestion, sentiment analysis tools speci�c for
software datasets have been proposed. Islam and Zibran [15] devel-
oped SentiStrength − SE based on SentiStrength to address the
major di�culties by creating domain dictionary and introducing
other heuristic rules. The presented evaluation showed that their
tool signi�cantly outperformed SentiStrength.
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Uddin and Khomh [36] detected the polarity (positive, negative,
neutral) of sentences related to API usage by using a customized
version of the Sentiment Orientation algorithm [13]. The algorithm
was originally developed to mine and summarize customer opinions
about computer products. However, Uddin and Khomh customized
the tool with words speci�c to API reviews. To the best of our
knowledge, these are the only cases where the authors tried to cus-
tomize state-of-the-art sentiment analysis tools to �t the software
engineering domain.

3 METHODOLOGY
We brie�y describe our initial plan to build a tool to recommend
software libraries to developers given (i) a short description of a
task at hand (i.e., functional requirements) and (ii) a list of non-
functional requirements considered more/less important by the
developer for the speci�c implementation task (e.g., security is of
paramount importance, while high performance is nice to have but
not really needed).

The basic idea was to leverage crowdsourced knowledge by
mining opinions posted by developers while discussing on Q&A
websites such as Stack Over�ow. Our plan failed due to very poor
results obtained when mining opinions from SE datasets. For this
reason, while we present a detailed description of the opinion min-
ing process we adopted, we only provide a brief overview of the
overall idea and its di�erent components.

stackoverflow
Developer

8

Front-end Maven

libraries
miner

1

database

2

fine-grained 
linker

3

4 5

opinion 
miner

6 7

9

Figure 1: Our vision of the library recommender system.

The overall idea is depicted in Fig. 1. The dashed arrows represent
dependencies (e.g., 1 and 3 ), while the full arrows indicate �ows
of information pushed from one component to another. The libraries
miner mines from the maven central repository6 all available Java
libraries ( 1 in Fig. 1). We extract for each library its: (i) name, (ii)
description, (iii) link to the jar of the latest version, (iv) license, and
(v) number and list of clients using it. All the information is stored
in our database 2 . The �ne-grained linker mines Stack Over�ow
discussions to establish �ne-grained links between the libraries
stored in the database 4 and relevant sentences in Stack Over�ow
discussions 3 .

6http://central.maven.org/maven2/maven/

Knowing the sentences related to a speci�c library, the opinion
miner component can retrieve them 6 , identify the expressed
sentiments (i.e., positive, neutral, or negative), classify opinions
on the basis of the non-functional requirements it refers to (e.g.,
usability, performance, security, community support, etc.), and store
them in the database 7 .

Finally, the developer interested in receiving recommendations
about software libraries submits a textual query describing the
task in a Web-based front-end and important non-functional re-
quirements 8 .This information is provided to a Web service 9 to
identify the most relevant and suitable libraries considering both
functional and non-functional requirements.

In the following we detail our work to create the opinion miner
component, where sentiment analysis plays a vital role. We report
the negative results we achieved in Section 4.

3.1 Mining Opinions in Software Engineering
Datasets

Previous work that attempted to mine opinions in SE datasets [16,
23, 35] o�ers a clear warning: Using sentiment analysis/opinion min-
ing techniques out-of-the-box on SE datasets is a recipe for negative
results. Indeed, these tools have been designed to work on user’s
reviews of products/movies and do not take into consideration
domain-speci�c terms. For example, the word robust has a clear
positive polarity when referred to a software product, while it does
not express a speci�c sentiment in a movie review. This pushed
researchers to create customized versions of these tools, enrich-
ing them with information about the sentiment of domain-speci�c
terms (e.g., SentiStrength − SE by Islam and Zibran [15]).

Despite the e�ort done by some authors in developing cus-
tomized tools, there is a second major limitation of the sentiment
analysis tools mostly used in SE (e.g.,SentiStrength [34]). Such
tools assess the sentiment of a sentence by looking at the single
words in isolation, assigning positive/negative scores to the words
and then summing these scores to obtain an overall sentiment for
the sentence. Thus, the sentence composition is ignored. For exam-
ple, a sentence such as “I would not recommend this library, even
though it is robust and fast” would be assessed by these techniques
as positive in polarity, given the presence of words having a posi-
tive score (i.e., robust, fast). Such a limitation has been overcome
by the Stanford CoreNLP [32] approach used for the analysis of
sentiment in movies’ reviews. The approach is based on a Recur-
sive Neural Network (RNN) computing the sentiment of a sentence
based on how words compose the meaning of the sentence [32].
Clearly, a more advanced approach comes at a cost: The e�ort
required to build its training set. Indeed, it is not su�cient to sim-
ply provide the polarity for a vocabulary of words but, to learn
how positive/negative sentences are grammatically built on top
of positive/negative words, it needs to know the polarity of all
intermediate nodes composing a sentence used in the training set.

We discuss the example reported in Fig. 2. Gray nodes represent
(sequences of) words having a neutral polarity, red ones indicate
negative sentiment, green ones positive sentiment. Overall, the sen-
tence has a negative sentiment (see the root of the tree in Fig. 2),
despite the presence of several positive terms (the tree’s leafs) and
intermediate nodes.

http://central.maven.org/maven2/maven/
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I

would not

,

recommend

this library

even

though

it

is

robust and

fast

Figure 2: Example of the labeling needed to build the Stan-
ford CoreNLP training set.

To use this sentence composed of 14 words in the training set of
the RNN, we must provide the sentiment of all 27 nodes depicted in
Fig. 2. This allows the RNN to learn that while “it is robust and fast”
has a positive polarity if taken in isolation, the overall sentence is
expressing a negative feeling about the library due to the “I would
not recommend this library” sub-sentence.

Given the high context-speci�city of our work to SE datasets (i.e.,
Stack Over�ow posts), we decided to adopt the Stanford CoreNLP
tool [32], and to invest a substantial e�ort in creating a customized
training set for it. Indeed, as highlighted in previous work [16,
23, 35], it makes no sense to apply an approach trained on movie
reviews on SE datasets.

3.1.1 Building a Training Set for the OpinionMiner. Weextracted
from the latest available Stack Over�ow dump (dated July 2017) the
list of all discussions (i) tagged with Java, and (ii) containing one
of the following words: library/libraries, API (s). Given our original
goal (i.e., recommending Java libraries on the basis of crowdsourced
opinions), we wanted to build a training set as domain-speci�c as
possible for the RNN. By applying these �lters, we collected 276,629
discussions from which we extracted 5,073,452 sentences by using
the Stanford CoreNLP toolkit [19]. We randomly selected 1,500
sentences and manually labeled them by assigning a sentiment
score to the whole sentence and to every node composing it.

The labeling process was performed by �ve of the authors (from
now on, evaluators) and supported by a Web application we built.
The Web app showed to each evaluator a node (extracted from a
sentence) to label with a sentiment going from -2 to +2, with -2
indicating strong negative, -1 weak negative, 0 neutral, +1 weak
positive, and +2 strong positive score. The choice of the �ve-levels
sentiment classi�cation was not random, but driven by the obser-
vation of the movie reviews training set made publicly available
by the authors of the Stanford CoreNLP [32] sentiment analysis
tool7. Note that a node to evaluate could be a whole sentence, an
intermediate node (thus, a sub-sentence), or a leaf node (i.e., a single
word). To avoid any bias, the Web app did not show to the evaluator
the complete sentence from which the node was extracted. Indeed,
knowing the context in which a word/sentence is used could intro-
duce a bias in the assessment of its sentiment polarity. Finally, the
7https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip

Web application made sure to have two evaluators for each node,
thus reducing the subjectivity bias. This process, which took ∼90
working hours of manual labeling, resulted in the total labeling of
the sentiment polarity for 39,924 nodes (i.e., 19,962 nodes extracted
from the 1,500 sentences × 2 evaluators per node).

Once the labeling was completed, two of the authors worked on
con�icts resolution (i.e., cases in which two evaluator assigned a
di�erent sentiment to the same node). All the 279 con�icts involving
complete sentences (18.6% of the labeled sentences) were �xed.
Indeed, it is of paramount importance to assign a consistent and
double-checked sentiment to the complete sentences, considering
the fact that they will be used as a ground truth to evaluate our
approach. Concerning the intermediate/leaf nodes, we had a total
of 2,199 con�icts (11.9% of the labeled intermediate/leaf nodes). We
decided to only manually solve 123 strong con�icts, meaning those
for which there was a score di�erence ≥ 2 (e.g., one of the evaluators
gave 1, the other one -1), while we automatically process the 2,076
having a con�ict of only one point. Indeed, slight variations of the
assigned sentiment (e.g., one evaluator gave 1 and the other 2) are
expected due to the subjectivity of the task. The �nal sentiment
score was s , in case there was agreement between the evaluators,
while it was round[(s1 + s2)/2] in case of unsolved con�ict, where
round is the rounding function to the closest integer value and si
is the sentiment assigned by the ith evaluator.

4 NEGATIVE RESULTS
Before incorporating the opinion miner component, we decided to
assess it individually, and not in the context of the whole library
recommendation task. We performed this assessment on the dataset
of manually labeled 1,500 sentences. Among those sentences, 178
are positive, 1,191 are neutral, and 131 are negative. We performed
a ten-fold cross validation: We divided the 1,500 sentences into ten
di�erent sets, each one composed of 150 sentences. Then, we used
a set as a test set (we only use the 150 complete sentences in the test
set, and not all their intermediate/leaf nodes), while the remaining
1,350 sentences, with all their labeled intermediate/leaf nodes, were
used for training8. Since we are mostly interested in discriminating
between negative, neutral, and positive opinions, we discretized the
sentiment in the test set into these three levels. Sentences labeled
with “-2” and “-1” are considered negative (-1), those labeled with
“0” neutral (0), and those labeled with “+1” and “+2” as positive (+1).
We discretized the output of the RNN into the same three levels.
We assessed the accuracy of the opinion miner by computing recall
and precision for each category. Computing the overall accuracy
would not be e�ective, given the vast majority of neutral opinions
in our dataset (i.e., a constant neutral classi�er would obtain a high
accuracy, ignoring negative and positive opinions).

Table 2 reports the results achieved by applying Stanford Core-
NLP SO9 on sentences extracted from Stack Over�ow discussions.

8The StanfordCoreNLP tool requires—during the training of the neural network—a
so called development set to tune some internal parameters of the network. Among
the 1,350 sentences with intermediate/leaf nodes in training set we randomly selected
300 sentences for composing the development set at each run.
9Stanford CoreNLP SO is the name of the tool with our new model trained with Stack
Over�ow discussions, while StanfordCoreNLP is the sentiment analysis component
of StanfordCoreNLP with the default model trained using movie reviews.

https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
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Table 2: Testing results of Stanford CoreNLP sentiment analyzer with new model trained with Stack Over�ow discussions.

batch # correct
prediction

# positive
sentences

positive
precision

positive
recall

# neutral
sentences

neutral
precision

neutral
recall

# negative
sentences

negative
precision

negative
recall

1 113 10 0.250 0.200 118 0.835 0.898 22 0.333 0.227
2 112 15 0.294 0.333 118 0.853 0.839 17 0.471 0.471
3 116 15 0.000 0.000 121 0.819 0.934 14 0.273 0.214
4 123 9 0.600 0.333 122 0.875 0.918 19 0.471 0.421
5 110 10 0.167 0.100 119 0.833 0.840 21 0.375 0.429
6 129 11 0.600 0.273 118 0.891 0.975 21 0.688 0.524
7 93 6 0.111 0.167 130 0.911 0.631 14 0.196 0.714
8 117 17 0.400 0.118 116 0.809 0.948 17 0.556 0.294
9 111 18 0.333 0.056 113 0.770 0.947 19 0.375 0.158

10 115 20 1.000 0.050 116 0.799 0.957 14 0.300 0.214
Overall 1139 131 0.317 0.145 1191 0.836 0.886 178 0.365 0.365

The table shows the number of correct predictions, the number of
positive/neutral/negative sentences in the batch of testing sets and
the corresponding precision/recall values, while the last row reports
the overall performance on the whole dataset. Table 3 shows some
concrete examples of sentiment analysis with Stanford CoreNLP
SO.

Table 3: Examples of sentiment analysis results of Stanford
CoreNLP SO.

Sentence Oracle Prediction
It even works on Android. Positive Positive
Hope that helps some of you with the same problem. Positive Negative
There is a central interface to access this API. Neutral Neutral
How is blocking performed? Neutral Negative
I am not able to deploy my App Engine project locally. Negative Negative
Anyway, their current behavior does not allow what you
want.

Negative Neutral

The results shown in Table 2 highlight that, despite the speci�c
training, Stanford CoreNLP SO does not achieve good performance
in analyzing sentiment of Stack Over�ow discussions. Indeed, its
precision and recall in detecting positive and negative sentiments
is below 40%, thus discouraging its usage as a fundamental part
of a recommendation system. Although Stanford CoreNLP SO can
correctly identify more negative than positive sentences, only a
small fraction of sentences with positive/negative sentiment is
identi�ed. Also, there are more mistakenly than correctly identi�ed
sentences in both sets.

Based on the results we achieved, it is impracticable to build on
the top of Stanford CoreNLP SO an e�ective recommender system
for libraries: The high percentage of wrong sentiment classi�cation
will likely result in the recommendation of the wrong library. Thus,
besides the huge e�ort we spent to train Stanford CoreNLP SO
with a speci�c and large software dataset, we failed in achieving an
e�ective sentiment analysis estimator. For this reason, we decided
to change our original plan and perform a deeper analysis of the ac-
curacy of sentiment analysis tools when used on software-related
datasets. Speci�cally, we aim to understand whether (i) domain
speci�c training data really helps in increasing the accuracy of

sentiment analysis tool; and whether (ii) other state-of-the-art sen-
timent analysis tools are able to obtain good results on software
engineering datasets, including our manually labeled Stack Over-
�ow dataset. Understanding how these tools perform can also help
us in gaining deeper insights into the current state of sentiment
analysis for software engineering.

5 EVALUATING SENTIMENT ANALYSIS FOR
SOFTWARE ENGINEERING

The goal of the study is to analyze the accuracy of sentiment analy-
sis tools when applied to software engineering datasets, with the
purpose of investigating how di�erent contexts can impact their ef-
fectiveness. The context of the study consists of text extracted from
three software-related datasets, namely Stack Over�ow discussions,
mobile app reviews, and JIRA issue comments.

5.1 Research Questions and Context
The study aims to answer the following research questions:
RQ1: How does our Stanford CoreNLP SO perform compared to

other sentiment analysis tools? We want to verify whether other
state-of-the-art tools are able to achieve better accuracy on the
Stack Over�ow dataset we manually built, thus highlighting
limitations of Stanford CoreNLP SO. Indeed, it could be that our
choice of the Stanford CoreNLP and therefore of developing
Stanford CoreNLP SO was not the most suitable one, and other
existing tools already provide better performance.

RQ2: Do di�erent software-related datasets impact the performance
of sentiment analysis tools? We want to investigate the extent to
which, analyzing other kinds of software engineering datasets,
e.g., issue comments and app reviews, sentiment analysis tools
would achieve di�erent performance than for Stack Over�ow
posts. For example, such sources might contain less neutral
sentences and, the app reviews in particular, be more similar to
the typical training sets of sentiment analysis tools.
The context of the study consists of textual documents from

three di�erent SE repositories, i.e., (i) Question & Answer forums,
i.e., Stack Over�ow discussions, (ii) app stores, i.e., users’ reviews
on mobile apps, and (iii) issue trackers, i.e., JIRA issue comments.
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We chose these types of textual documents as they have been
studied by SE researchers, also in the context of sentiment analy-
sis [2, 24, 27, 36]. As our goal is to evaluate the accuracy of di�erent
sentiment analysis tools on these three datasets, we need to de�ne
the ground truth sentiment for each of the sentences/texts they
contain.

The following process was adopted to collect the three datasets
and de�ne their ground truth:
• Stack Over�ow discussions.We reuse the ground truth for
the 1,500 sentences used to evaluate Stanford CoreNLP SO.
• Mobile app reviews. We randomly selected 341 reviews from
the dataset of 3k reviews provided by Villarroel et al. [37], which
contains manually-labeled reviews classi�ed on the basis of the
main information they contain. Four categories are considered:
bug reporting, suggestion for new feature, request for improving
non-functional requirements (e.g., performance of the app), and
other (meaning, reviews not belonging to any of the previous
categories). When performing the random selection, we made
sure to respect the proportion of reviews belonging to the four
categories in the original population in our sample (e.g., if 50%
of the 3k reviews belonged to the “other” category, we randomly
selected 50% of our sample from that category). The 341 selected
reviews represent a statistically signi�cant sample with 95%
con�dence level ±5% con�dence interval.
Once selected, we manually labeled the sentiment of each re-
view. The labeling process was performed by two of the authors
(from now on, evaluators). The evaluators had to decide where
the text is positive, neutral, or negative. A third evaluator was
involved to solve 51 con�ict cases.
• JIRA issue comments.We use the dataset collected by Ortu
et al. [25], containing 4k sentences labeled by three raters with
respect to four emotions: love, joy, anger, and sadness. This
dataset has been used in several studies as the “golden set” for
evaluating sentiment analysis tools [15, 16]. During the original
labeling process, each sentence was labeled with one of six
emotions: love, joy, surprise, anger, sadness, fear. Among these
six emotions, love, joy, anger, and sadness are mostly expressed.
As also done by Jongeling et al. [16], we map the sentences
with the label love or joy into positive sentences, and those with
label anger or sadness into negative sentences.
Table 4 reports for each dataset (i) the number of sentences ex-

tracted, and (ii) the number of positive, neutral, negative sentences.

Table 4: Dataset used for evaluating sentiment analysis tools
in software engineering

Dataset # sentences # positive # neutral # negative

Stack Over�ow 1,500 178 1,191 131
App reviews 341 186 25 130
JIRA issue 926 290 0 636

5.2 Data Collection and Analysis
On the three datasets described above we experimented with the
following tools, which are popular in the SE research community:

• SentiStrength. SentiStrength does not give the sentiment
of the text directly, instead, it reports two sentiment strength
scores of the text analyzed: one score for the negative sentiment
expressed in the text from -1 (not negative) to -5 (extremely
negative), the other for the positive sentiment expressed from
1 (not positive) to 5 (extremely positive). We sum these two
scores, and map the sum of over 0, 0, and below 0 into positive,
neutral, and negative, respectively.
• NLTK. Based on VADER Sentiment Analysis, NLTK reports
four sentiment strength scores for the text analyzed: “negative”,
“neutral”, “positive”, and “compound”. The scores for “negative”,
“neutral”, and “positive” range from 0 to 1, while the “compound”
score is normalized to be between -1 (most extreme negative)
and +1 (most extreme positive). As suggested by the author
of the VADER component10, we use the following thresholds
to identify the sentiment of the text analyzed: score ≥ 0.5:
positive; −0.5 < score < 0.5: neutral; score ≤ −0.5: negative.
• Stanford CoreNLP. By default, Stanford CoreNLP reports the
sentiment of the text on a �ve-value scale: very negative, neg-
ative, neutral, positive, and very positive. Since we are only
interested in discriminating between negative, neutral, and pos-
itive opinions, we merged very negative into negative, and very
positive into positive.
• SentiStrength-SE. As it is a tool based on SentiStrength,
and uses the same format of reported results, we interpret its
sentiment score by adopting the same approach we used for
SentiStrength.
• Stanford CoreNLP SO. Similarly, we use the same approach
adopted for Stanford CoreNLP to convert �ve-scale values into
three-scale values. To examine the performance on app reviews
and JIRA issue comments, we used the Stack Over�ow labeled
sentences (including internal nodes) as training set11.
We assess the accuracy of the tools by computing recall and

precision for each of the three considered sentiment categories (i.e.,
positive, neutral, negative) in each dataset.

5.3 Results
Table 5 reports the results we achieved by applying the �ve senti-
ment analysis approaches on the three di�erent SE datasets. The
table reports the number of correct predictionsmade by the tool, and
precision/recall for predicting sentiment of positive/neutral/negative
sentences. For each dataset/metric, the best achieved results are
highlighted in bold. In the following we discuss the achieved results
aiming at answering our research questions.

5.3.1 RQ1: How does our Stanford CoreNLP SO perform as com-
pared to other sentiment analysis tools? To answer RQ1, we analyze
the results achieved by the �ve tools on the Stack Over�ow dataset
we built.

As for the comparison of Stanford CoreNLP SOwith the original
model of Stanford CoreNLP, the results show that on neutral sen-
tences Stanford CoreNLP SO achieves a better recall while keeping
almost the same level of precision. Also, on positive and negative
sentences Stanford CoreNLP SO is still able to provide a good in-
crement of the precision.
10https://github.com/cjhutto/vaderSentiment
11In this case, 20% of the training set was used as development set.

https://github.com/cjhutto/vaderSentiment
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Table 5: Evaluation results for sentiment analysis tools applied in software engineering domain. In bold the best results.

dataset tool # correct
prediction

positive
precision

positive
recall

neutral
precision

neutral
recall

negative
precision

negative
recall

Stack Over�ow

SentiStrength 1,043 0.200 0.359 0.858 0.772 0.397 0.433
NLTK 1,168 0.317 0.244 0.815 0.941 0.625 0.084
Stanford CoreNLP 604 0.231 0.344 0.884 0.344 0.177 0.837
SentiStrength-SE 1,170 0.312 0.221 0.826 0.930 0.500 0.185
Stanford CoreNLP SO 1,139 0.317 0.145 0.836 0.886 0.365 0.365

App reviews

SentiStrength 213 0.745 0.866 0.113 0.320 0.815 0.338
NLTK 184 0.751 0.812 0.093 0.440 1.000 0.169
Stanford CoreNLP 237 0.831 0.715 0.176 0.240 0.667 0.754
SentiStrength-SE 201 0.741 0.817 0.106 0.400 0.929 0.300
Stanford CoreNLP SO 142 0.770 0.253 0.084 0.320 0.470 0.669

JIRA issues

SentiStrength 714 0.850 0.921 - - 0.993 0.703
NLTK 276 0.840 0.362 - - 1.000 0.269
Stanford CoreNLP 626 0.726 0.621 - - 0.945 0.701
SentiStrength-SE 704 0.948 0.883 - - 0.996 0.704
Stanford CoreNLP SO 333 0.635 0.252 - - 0.724 0.409

However, in this case the increment of precision has a price
to pay: Stanford CoreNLP SO provides levels of recall lower than
Stanford CoreNLP. The comparison between Stanford CoreNLP
and Stanford CoreNLP SO should be read taking into account that
the original Stanford CoreNLPmodel is trained on over 10k labeled
sentences (i.e., >215k nodes). Stanford CoreNLP SO is trained on a
smaller training set. Thus, it is possible that a larger training set
could improve the performance of Stanford CoreNLP SO. However,
as of now, this is a mere conjecture.

When looking at other tools, the analysis of the results reveal
that all the experimented tools achieve comparable results and—
more important—none of the experimented tools is able to reliably
assess the sentiment expressed in a Stack Over�ow sentence. Indeed,
while all the tools are able to obtain good results when predicting
neutral sentences, their accuracy falls when working on positive
and negative sentences. For example, even considering the tool
having the highest recall for identifying positive sentences (i.e.,
SentiStrength) (i) there is only 35.9% chance that it can correctly
spot a positive sentence and (ii) one out of �ve sentences that it
will label as positive will be actually false positives (precision=20%).
The recall is almost the same as randomly guessing which has 33.3%
chance of success. These results reveal that there is still a long way
to go before researchers and practitioners can use state-of-the-art
sentiment analysis tools to identify the sentiment expressed in
Stack Over�ow discussions.

RQ1 main �ndings: (i) the training of Stanford CoreNLP on
SO discussions does not provide a signi�cant improvement as com-
pared to the original model trained on movie reviews; (ii) the pre-
diction accuracy of all tools are biased towards the majority class
(neutral) for which a very good precision and recall is almost always
achieved; and (iii) all tools achieve similar performance and it is
impossible to identify among them a clear winner or, in any case,
a tool ensuring su�cient sentiment assessment of sentences from
Stack Over�ow discussions.

5.3.2 RQ2: Do di�erent so�ware-related datasets impact the per-
formance of sentiment analysis tools? To answer RQ2, we compare
the accuracy of all tools on the three datasets considered in our
study. When we look at results for app reviews, we can see that,
di�erently from what observed in the Stack Over�ow dataset, most
tools can predict positive texts with reasonable precision/recall
values. Even for negative reviews, the results are in general much
better. It is worth noting that Stanford CoreNLP is competitive for
identifying positive and negative sentiment as compared to other
tools. Indeed, compared to other texts in software engineering
datasets, such as Stack Over�ow discussions and JIRA issues, app
reviews can be less technical and relatively more similar to movie
reviews, with which the original model of Stanford CoreNLP is
trained. However, when identifying neutral app reviews, all tools
exhibit poor accuracy. This is likely due to the fact that, while pos-
itive and negative app reviews could be easily identi�ed by the
presence/absence of some “marker terms” (e.g., the presence of the
bug term is likely related to negative reviews), this is not the case
for the neutral set of reviews, in which a wider and more variegate
vocabulary might be used.

When inspecting results for JIRA issue comments, we �nd that
SentiStrength and SentiStrength − SE have better accuracy than
other tools, with SentiStrength − SE providing a better precision-
recall balance across the two categories of sentiment (i.e., positive
and negative). Despite the mostly good results achieved by the
experimented tools on the JIRA dataset, there are some important
issues in the evaluations performed on this dataset.

First, the absence of neutral sentences does not provide a clear
and complete assessment of the accuracy of the tools. Indeed, as
shown in the app reviews, neutral texts might be, in some datasets,
themost di�cult to identify, likely due to the fact that they represent
that “grey zone” close to both positive and negative sentiment.

Second, the JIRA dataset is built by mapping emotions expressed
in the comments (e.g., joy or love) into sentiments (e.g., positive).



Sentiment Analysis for So�ware Engineering: How Far Can We Go? ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 6: Confusion matrices on the Stack Over�ow dataset.

SentiStrength
positive neutral negative

positive 47 66 18
neutral 173 919 99
negative 15 86 77

NLTK
positive neutral negative

positive 32 96 3
neutral 64 1121 6
negative 5 158 15

Stanford CoreNLP
positive neutral negative

positive 45 30 56
neutral 145 410 636
negative 5 24 149

SentiStrength-SE
positive neutral negative

positive 29 93 9
neutral 59 1108 24
negative 5 140 33

Stanford CoreNLP SO
positive neutral negative

positive 19 96 16
neutral 39 1055 97
negative 2 111 65

However, such a mapping does not always hold. For instance, posi-
tive comments in issue tracker does not always express joy or love
(e.g., thanks for the updated patch), thus allowing to obtain a very
partial view of the accuracy of sentiment analysis tools.

To highlight the importance of neutral items in the evaluation
of a sentiment analysis tool, Table 6 shows the confusion matrices
obtained by the �ve di�erent sentiment analysis tools on the Stack
Over�ow dataset (see Table 4).

All tools are e�ective in discriminating between positive and
negative items. For example, our Stanford CoreNLP SO only mis-
classi�ed two negative sentences as positive, and 16 positive sen-
tences as negative. NLTK only misclassi�es �ve negative sentences
as positive, and three positive sentences as negative. The errors
are mostly due to negative/positive sentences classi�ed as neutral
and vice versa. This con�rms the issues found by Tourani et al. [35]
when using SentiStrength on SE data, and this is why evaluating
sentiment analysis tools on datasets not containing neutral sen-
tences introduces a considerable bias. Similar observations hold for
the app reviews dataset, in which the performance in classifying
neutral reviews is, as shown in Table 5, extremely poor.

RQ2 main �ndings: The accuracy of sentiment analysis tools
is, in general, poor on software engineering datasets. We claim this
because we found no tool able to reliably discriminating between
positive/negative and neutral items. Indeed, while the accuracy
on the app reviews and JIRA datasets are acceptable (i) in the app
reviews dataset the accuracy in identifying neutral items is very
low, and (ii) the data obtained with the JIRA dataset can not be
considered as reliable due to the discussed issues.

6 THREATS TO VALIDITY
Threats to construct validity concern the relation between the-
ory and observation. The �rst concern is related to our manual
sentiment labeling. Sentiment expressed in the text might be misin-
terpreted by people. Also, the labeling might be impacted by sub-
jective opinions of evaluators. Although we adopted an additional
con�ict resolving process, it is not guaranteed that the manually
assigned sentiment is always correct.

Another threat is the sentiment score mapping, i.e., mapping
�ve-scale sentiment to three-scale sentiment. Indeed, sentiment
expressed in the text have di�erent degrees. Predicting slightly
negative sentence as neutral should be considered a smaller mis-
take then predicting a very negative sentence as neutral, since
the threshold to draw a line between the neutral and the negative
sentiment can be more subjective.

Threats to internal validity concern internal factors we did
not consider that could a�ect the variables and the relations being
investigated. In our study, they are mainly due to the con�guration
of sentiment analysis tools/approaches we used. In most cases, we
use the default or suggested parameters, for example, the threshold
for NLTK. However, some parameters might be further tuned to
increase the sentiment prediction performance.

Threats to conclusion validity concern the relation between
the treatment and the outcome. We randomly selected sentences
from Stack Over�ow discussions and app reviews from an existing
dataset [37]. While we considered statistically signi�cant samples,
we cannot guarantee that our samples are representative of the
whole population.

Threats to external validity concern the generalizability of
our �ndings. While the evaluation has considered the most com-
monly used sentiment analysis tools in software engineering, some
less popular tools might have been ignored. Constantly there are
lots of new ideas and approaches popping up in the natural lan-
guage processing domain, but few of them have been examined
and veri�ed in the software engineering context. Since our goal is
to seek a good sentiment analysis tool for software-related texts,
in this paper we only select the tools already used in previous
software engineering studies. Our datasets are limited to three fre-
quently mined software engineering repositories, while texts in
other contexts, such mailing list and IRC chats, are not considered.

7 LESSONS LEARNED
No tool is ready for real usage of identifying sentiment ex-
pressed in SE related discussions yet. No tool, including the
ones speci�cally customized for certain software engineering tasks,
is able to provide precision and recall levels su�cient to entail the
tool adoption for a task such as recommending software libraries.
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By relying on such tools, we would certainly generate wrong rec-
ommendations and miss good ones. Our results are a warning
to the research community: Sentiment analysis tools should al-
ways be carefully evaluated in the speci�c context of usage before
building something on top of them. For example, while Uddin and
Khomh [36] presented a very interesting approach to mine APIs
opinions from Stack Over�ow, they do not report the accuracy of
the sentiment analysis component they exploit to identify posi-
tive/negative opinions about APIs.

Speci�c re-training is required, but does not represent a
silver bullet for improving the accuracy. Previous literature
has pointed our that sentiment analysis tools cannot be used out-
of-the-box for software engineering tasks [15, 16, 23, 35]. In some
cases, tools have introduced a data preprocessing or a re-training to
cope with the speci�c software engineering lexicon, in which there
are positive or negative words/sub-sentences that are not positive or
negative in other contexts, or vice versa (e.g., the word bug generally
carries a negative sentiment when referred to a library, while it can
be considered neutral in movie reviews). However, as results have
shown, this might still be insu�cient to guarantee good accuracy
in terms of both precision and recall on all polarity levels. Also,
customization is very dataset speci�c, and therefore applying the
tool on di�erent datasets would require a new training. In other
words, customizing a sentiment analysis tool for JIRA does notmake
it ready for Stack Over�ow and vice versa. Finally, some algorithms,
such as recursive neural networks, require costly re-training. In our
case, the training performed with 1,500 sentences (which turned
into labeling almost 40k nodes) revealed to be insu�cient for a
clear improvement of the Stanford CoreNLP accuracy.

Some software engineering applications make sentiment
analysis easier than others. Sentiment analysis tools perform
better on app reviews. App reviews contain sentences that, in most
cases, clearly express the opinion of a user, who wants to reward
an app or penalize it, by pointing out a nice feature or a serious
problem. Hence, the context is very similar to what those sentiment
tools are familiar with. Still, as observed, the tools’ performance on
the neutral category is very poor. Looking at the issue tracker data,
besides the lack of neutral sentences in the JIRA dataset (which per
se makes the life of the sentiment analysis tools much easier), again
the predominance of problem-reporting sentences may (slightly)
play in favour of such tools. Stack Over�ow is a di�erent beast. Posts
mostly contain discussions on how to use a piece of technology,
and between the lines somebody points out whether an API or a
code pattern is good or less optimal. In many cases, without even
expressing strong opinions. This de�nitely makes the applicability
of sentiment analysis much more di�cult.

Should we expect 100% accuracy from sentiment analysis
tools? No, we should not. In our manual evaluation, out of the
1,500 Stack Over�ow sentences we manually labeled, there were
279 cases of disagreement (18.6%). This means that even humans are
not able to agree about the sentiment expressed in a given sentence.
This is also in line with �ndings of Murgia et al. [21] on emotion
mining: Except when a sentence expresses clear emotions of love,
joy and sadness, even for humans it is hard to agree. Hence, it is
hard to expect that an automated tool can do any better. Having
said that, advances are still needed to make sentiment analysis tools
usable in the software engineering domain.

Text reporting positive and negative sentiment is not suf-
�cient to evaluate sentiment analysis tools. As discussed, the
most di�cult task for sentiment analysis tools is to discriminate be-
tween positive/negative vs neutral sentiment, while they are quite
e�ective in discriminating between positive and negative sentiment.
This is why datasets such as the JIRA one that we, and others, used
in previous work [15, 16], is not su�cient to evaluate sentiment
analysis tools. We hope that releasing our dataset [18] will help in
more robust evaluations of sentiment analysis tools.

8 CONCLUSION
Some say that the road to hell is paved with good intentions. Our
work started out with what we consider a promising idea: We
wanted to develop an approach to automatically recommend APIs
and libraries given a set of functional and non-functional require-
ments. To do so, we wanted to leverage the large body of knowledge
that is stored in Q&A websites like Stack Over�ow. The approach
was going to exploit opinion mining using deep learning through
recurrent neural network. However, as we �nalized our work we
noticed that it simply did not work, because the opinion mining
component had unacceptable performance.

The reason for the failure is manifold. Firstly, it highlights how
machine learning, even in its most advanced forms, is and remains
a black box, and it is not completely clear what happens in that
black box. To this one can add the design principle “garbage in,
garbage out”: No matter how advanced a technique, if the input is
not appropriate, it is improbable that an acceptable output can be
produced. In the speci�c case one might argue that Stack Over�ow
is not really the place where emotions run high: It is a place where
developers discuss technicalities. Therefore it is rather obvious that
opinion mining will have a hard time. While this might be true,
our study revealed that also in datasets where emotions are more
evident, like app reviews and issue trackers, there is an intrinsic
problem with the accuracy of current state-of-the-art sentiment
analysis tools.

In the end we decided to write a “negative results” paper. As
Walter Tichy writes, “Negative results, if trustworthy, are extremely
important for narrowing down the search space. They eliminate use-
less hypotheses and thus reorient and speed up the search for better
approaches”. We hope that the software engineering community can
appreciate and leverage the insights that we obtained during our
work. We are also releasing the complete dataset as a replication
package. As a �nal word, we would like to stress that we are not
dismissing opinion mining in software engineering as impractical,
but rather as not mature enough yet. We believe there is promise in
the �eld, but that a community e�ort is required to bring opinion
mining to a level where it actually becomes useful and usable in
practice.
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