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ABSTRACT
As modern software systems are becoming increasingly complex,

developers often need to rely on online sources to address prob-

lems encountered during software development and maintenance.

These resources provide developers with access to peers’ expertise,

covering knowledge of different software lifecycle phases, includ-

ing design, implementation, and maintenance. However, exploiting

such knowledge and converting it into actionable items is far from

trivial, due to the vastness of the information available online aswell

as to its unstructured nature. In this research, we aim at (partially)

crowdsourcing the software design, implementation and mainte-

nance process by exploiting the knowledge embedded in various

sources available on the Web (e.g., Stack Overflow discussions, pre-

sentations on SlideShare, open source code, etc.). For example, we

want to support software design decisions (e.g., whether to use a
specific library for the implementation of a feature) by performing

opinion mining on the vast amount of information available on

the Web, and we want to recommend refactoring operations by

learning from the code written in open source systems. The final

goal is to improve developers’ productivity and code quality.
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1 RESEARCH PROBLEM AND HYPOTHESIS
Developers often need to search for relevant information from

official documentation and/or other online resources, such as tuto-

rials, mailing list, etc. These resources cover knowledge valuable in

different phases of the software lifecycle including design, imple-

mentation, and maintenance. However, the information provided

in these resources can be overwhelming. For example, Stack Over-

flow
1
currently includes 15 million discussions featuring over 99

million posts (i.e., questions, answers, and comments), amongwhich

many report personal opinions about design and implementation

choices (e.g., discussions about the best way to implement a given

feature in Java). Given the vastness of these online resources, devel-

opers often have to spend significant amount of time on extracting
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and aggregating useful pieces of knowledge from different sources,

which results in continuous context switches and reduces their pro-

ductivity. Additionally, developers might encounter bugs similar

to those which others have already fixed or need to write software

components implementing features already available in other soft-

ware projects. Being unable to retrieve and reuse this information

undermines the value of online resources and wastes developers’

effort.

We aim to propose techniques helping developers to exploit

knowledge embedded in various online sources during software

development and maintenance activities. More specifically, we will

study the possibility of using crowdsourced knowledge to assist

developers in (i) taking the best design decisions, (ii) speed up code

implementation, and (iii) automatically improve code quality via

refactoring operations. We refer to such a perspective as crowd-
sourced software development and maintenance.

The term crowdsourcing has been used to refer to “the act of tak-
ing a task traditionally performed by a designated agent (such as an
employee or a contractor) and outsourcing it by making an open call
to an undefined but large group of people” [15]. Since the emergence

of crowdsourcing, it has been applied in many software engineering

contexts. For example, Lim et al. [18] developed StakeSource2.0 to

identify and prioritize software requirements by automatically cre-

ating social networks of stakeholders and asking them to suggest

and rate requirements. Ahmed et al. [1] built a social computing

platform, Jabberwocky, which empowers a human and machine

resource management system to distribute programming tasks pro-

posed by developers to the crowd.

Managing the crowdsourcing process remains a big challenge in

practice [33]. Indeed (i) it is not easy to identify the people having

the right skills for a task to crowdsource, and (ii) the time needed

by the crowd to complete the task is difficult to estimate. Therefore,

recently some researches [24] have tried to partially automate the

crowdsourcing process. For example, Mujumdar et al. [24] present
an approach to automatically crowdsource solutions to debugging

problems. Their basic idea is to leverage test-driven development

as a source for bug fixing examples. Thus, they mostly focus on

crowdsourced knowledge that can be extracted from code to support

code-related activities (i.e., bug-fixing). A similar intuition is also

behind the works presenting approaches to support automatic bug-

fixing [4, 9, 12, 21, 32]. Still, the value of knowledge embedded in

online sources (e.g., developers’ opinions about the quality of a code
component) is strongly under-exploited.

In our vision of crowdsourced software development and mainte-
nance, we want to crowdsource (at least partially) not only code

development/maintenance activities such as bug-fixing, but also

design decisions. Our approaches should be able to collect and sum-

marize the vast knowledge embedded in online resources, and then

convert it into actionable items. More specifically, in this research,

we plan to investigate the following research tracks:
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Supporting code development andmaintenance activities
by learning from open source projects.We want to analyze the

code of the millions of open source systems available on online

forges to (partially) automatize code development and maintenance

(e.g., by supporting automatic code completion or recommending

refactoring operations).

Supporting software design choices by exploiting crowd-
sourced knowledge. The goal is to define approaches to mine

from online sources opinions expressed by a large group of develop-

ers to support design decisions (e.g., implementing a feature from

scratch as opposed to reuse an existing library). The opinions must

be summarized and converted into pieces of knowledge that can be

used to support decision-making processes.

We expect our work to not only have an impact in the software

engineering research community by promoting the usage of crowd-

sourced knowledge, but to also enhance developers’ productivity

in their everyday activities.

2 CROWDSOURCING CODE-RELATED
ACTIVITIES

Source code, like human language, is repetitive rather than unique

[11]. Moreover, source code is predictable. This characteristic has

been used to recommend code completion candidates by learning

from other parts of source code [14]. Therefore, mining source code

might be an effective way to enrich the code completion feature. We

have conducted a study to understand code redundancy patterns

(i.e., where source code tends to be unique as opposed to repetitive)
by analyzing a large-scale dataset of active Java projects mined from

GitHub [19]. Our results unveil that although code redundancy is

common, it is not uniform and mainly resides in specific code con-

structs (e.g., in import statements). We further investigated the

implications of the locality of redundancy by analyzing the per-

formance of n-gram language models when used to support code

completion [14]. Our study found that while code redundancy can

be used for code completion, its locality highly impacts the perfor-

mance of the language model-based code completion. This finding

can serve as a theoretical base for the development of a smarter

code completion approach based on information crowdsourced

from other systems.

Code completion is only one of the many code-related activities

that can be automated by exploiting crowdsourced knowledge. For

example, if we are able to learn from developers’ good practices (e.g.,
how to refactor code), we can exploit such a knowledge to auto-

matically improve the quality of our source code that is recognized

as one of the major factors determining the success of software

projects [27]. In such a context, we investigated the possibility of

improving the code quality by learning from other code [20]. More

specifically, we focused on recommending rename refactoring oper-

ations for identifiers by exploiting the lexical information extracted

from source code. Rename refactoring is important because iden-

tifiers account for 30% of the tokens and 70% of the characters in

the source code [8]. Naming identifiers in a careful, meaningful,

and consistent manner likely eases program comprehension and

supports developers in building consistent and coherent conceptual

models [26].

In the study, we used a n-gram language model to learn good

coding practices from a code base and automatically recommend

rename refactoring operations aimed at ensuring a consistent use

of identifiers in a given software system (e.g., two variables repre-

senting the same object in two different classes should be named

with the same identifier). We compared our approach with two

state-of-the-art techniques, one exploiting static analysis [30], and

one using natural language processing [2]. We asked the original

developers of five software systems to assess the meaningfulness of

the recommendations generated by the three techniques, for a total

of 922 rename refactorings manually evaluated. This is the largest

empirical study conducted to assess and compare rename refac-

toring tools. Our approach obtained the best performance among

the three tools [20]. The achieved results also shed light on the

possibility of crowdsourcing refactoring operations.

3 CROWDSOURCED DESIGN DECISIONS
Developers often consult online sources while taking design deci-

sions (e.g., whether to implement a given feature from scratch as

compared to reuse an available implementation). Given the com-

plexity of these choices and their important implications on the

success of a software project, it is crucial for developers to take

the best decision, possibly in a timely manner. We believe that

crowdsourcing opinions from the Web can help them in better deal-

ing with several of these design choices. To start exploring this

research area, we worked on the definition of a novel approach to

recommend software libraries to developers. Our initial idea was to

leverage crowdsourced knowledge on software libraries by mining

opinions posted by developers while discussing on Q&A websites

such as Stack Overflow. A similar idea has been recently proposed

by Uddin and Khomh [31]. Their approach exploits existing senti-

ment analysis tools to extract the sentiment expressed in the mined

opinions (e.g., to classify an opinion about the performance of a li-

brary as positive). However, recent studies have found that existing

sentiment analysis tools achieve poor accuracy when predicting

sentiment on software related textual artifacts [17]. Besides, the

system can only provide summarized opinions when developers

know exactly which libraries they are going to use, that is, no ex-

plicit recommendation is given for a given feature that developers’

want to implement.

Our plan is to develop a recommender system as depicted in

Fig. 1. The dashed arrows represent dependencies (e.g., 1 and 3 ),

while the full arrows indicate flows of information pushed from one

component to another. Arrows depicted in red (i.e., those numbered

from 1 to 7 ) indicate operations performed only once with the

goal of storing crowdsourced opinions about software libraries in

a database; the black ones represent instead actions triggered by

a request for recommendations about the software library to use

made by the developer using the front-end.

The system we envision mainly consists of three components:

libraries miner, fine-grained linker, and opinion miner.

• Libraries miner. The libraries miner mines all Java libraries

available in maven central
2
( 1 in Fig. 1) and stores the

information in our database 2 .

2
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Figure 1: Our vision of the library recommender system.

• Fine-grained linker. The fine-grained linker mines Stack Over-

flow discussions to establish fine-grained links between the

libraries stored in the database 4 and relevant sentences in

Stack Overflow discussions 3 . The linking information will

also be stored in the database 5 .

• Opinion miner. The opinion miner retrieves the linked sen-

tences 6 for further processing, namely identifying opin-

ions, and then store them into the database 7 .

When a developer is interested in receiving recommendations on

software libraries, she submits a textual query describing the feature

she needs to implement and expresses, on a scale from one to five,

the importance of different non-functional requirements 8 (e.g.,
performance, usability). This information is sent to a Web service

9 , to (i) identify libraries possibly relevant for the feature described

in the query by using state-of-the-art Information Retrieval (IR)

approaches, and (ii) identify the most suitable library considering

the non-functional requirements desired by the developer.

One of the fundamental components for the proper working of

this recommendation system is the opinion miner, that classifies
opinions based on their sentiment (positive, neutral, or negative)

and on the non-functional requirement (if any) they refer to. There-

fore, we started searching for appropriate sentiment analysis tools

to adopt.

Sentiment analysis was initially design to classify product re-

views [7], and later it has also been used to analyze texts from

other domains such as movie reviews [23]. In recent years, senti-

ment analysis techniques have also been used to analyze online

resources in the software engineering domain, such as forum posts

[10, 13] and app reviews [5, 6, 22]. In the software engineering field,

researchers often use state-of-the-art sentiment tools including

SentiStrength [29], NLTK [16], Stanford CoreNLP [28], and

EmoTxt [3]. However, as previously said, studies have found that

using existing sentiment analysis tools to analyze software engi-

neering related texts can lead to unsatisfactory results. Jongeling et
al. [17] evaluated the performance of these sentiment analysis tools

on a human labeled golden set from a developer emotions study by

Murgia et al. [25]. The result showed that these tools achieve very

poor performance when mining opinions from software engineer-

ing datasets, with an accuracy level lower than 50% (meaning that

in most of cases, they fail to classify positive/negative sentiments

expressed in a set of given sentences). Their further experiment

also confirmed that disagreement between these tools can result in

contradictory results when using them to conduct software engi-

neering studies.

Therefore, we cannot directly adopt the existing tools to extract

opinions from online discussions, instead, we need to train our

own model specifically for the software engineering domain. Af-

ter thorough comparison of different sentiment analysis tools, we

decided to adopt one of the most promising opinion mining tool

Stanford CoreNLP [28]. We invested a substantial effort in creat-

ing a customized training set for it, namely 40k manually labeled

sentences/words extracted from Stack Overflow. Despite such a

time-consuming training process, the results were negative, with

very poor accuracy achieved by the approach in assessing the senti-

ment of sentences. We also compared our trained tool with all major

techniques used in the software engineering community by exam-

ining their performance on three different software engineering

datasets: Stack Overflow discussions, mobile app reviews, and JIRA

issue comments. What we achieved is a bold and negative result:

None of the experimented tools, not even the one we explicitly

retrained on Stack Overflow, was able to provide a reliable assess-

ment of the opinions mined from software engineering datasets,

with an accuracy level close to 50%. The results of this study are

under review in a conference adopting double-blind review and,

thus, cannot be referenced.

Thus, our plan for the future months is to study how to success-

fully mine opinions from software engineering datasets. This will

be the stepping stone to then build decision-support systems for

software developers exploiting crowdsourced knowledge.

4 CONCLUSION AND FUTUREWORK
Our previous work mainly studied the feasibility of our proposed

research tracks. More specifically, we investigated the possibility of

reusing information from existing code to support code-related
activities and the possibility of identifying opinions expressed

in software-related texts, with the goal of supporting software
design decisions. For these two research tracks, we propose the

following future work:

Supporting code-related activities.

• Crowdsourced code completion.Current code completion tools

are usually built on datasets containing a limited number

of code repositories and always provide the same recom-

mendations in spite of different code contexts. We plan to

leverage the code available in open source systems to pro-

vide more accurate code completion recommendations in

IDEs, also considering the specific code context in which

code completion is required.

• Crowdsourced code quality improvement. Since we have al-
ready proved that refactoring operations can be learned from

other code, we will further apply learned rename refactoring

operations to automatically generated source code, with the

purpose of verifying its usefulness in other development con-

texts. In the future, we also plan to develop approaches able

to learn from other refactoring actions such as reorganizing

the code structure.

3



Supporting software design decisions.

• Accomplish the software libraries recommender based onmined
opinions. Instead of approaches based on manually labeled

sentiment datasets, we will consider alternative options to

mine opinions from software engineering datasets. We will

evaluate our recommendation system mainly from two per-

spectives: (i) its ability to correctly identify libraries and

corresponding opinions starting from the textual description

of the feature to implement provided as input by develop-

ers, and (ii) the usefulness for developers during a software

design task. For this second point, we plan to conduct a

controlled experiment asking developers to pick the best

library for a given implementation task given specific non-

functional requirements. Different groups of developers will

be asked to perform this task for several scenarios with and

without the help of our tool. First, we will measure the time

needed to make the choice when using/not using the recom-

mendation of our tool. Then, we will discuss with them cases

of disagreement (i.e., different library selected manually and

with the help of our tool) to collect qualitative feedback.

• Investigate the use of mined opinions to support other types
of design decisions. If our first task succeeds, we will then

investigate the possibility of supporting other design de-

cisions such as those related to data structures to use for

representing specific types of data, design patterns to adopt.

I just started my second PhD year, and I plan to spend roughly 15

months on each research track before starting writing my PhD the-

sis. I believe that the research plan presented in this paper poses a

few interesting research problems and hope that it can lead to valu-

able solutions useful for both academia (e.g., new opinion mining

techniques tailored for software engineering datasets) and industry

(i.e., new recommendation systems supporting their daily activities).
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