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Abstract—Recent studies have demonstrated that software is
natural, that is, its source code is highly repetitive and predictable
like human languages. Also, previous studies suggested the exis-
tence of a relationship between code quality and its naturalness,
presenting empirical evidence showing that buggy code is “less
natural” than non-buggy code. We conjecture that this quality-
naturalness relationship could be exploited to support refactoring
activities (e.g., to locate source code areas in need of refactoring).
We perform a first step in this direction by analyzing whether
refactoring can improve the naturalness of code.

We use state-of-the-art tools to mine a large dataset of refac-
toring operations performed in open source systems. Then, we
investigate the impact of different types of refactoring operations
on the naturalness of the impacted code. We found that (i) code
refactoring does not necessarily increase the naturalness of the
refactored code; and (ii) the impact on the code naturalness
strongly depends on the type of refactoring operations.

Index Terms—Naturalness, Refactoring, Open Source Software

I. INTRODUCTION

Software is not unique. Researchers have discovered that
for sequences of six tokens extracted from the source code,
the probability of finding the same sequence in other software
projects is higher than 50% [1]. Based on this finding, Hindle
et al. [2] introduced the concept of source code “naturalness”,
to indicate that source code is highly repetitive and predictable,
just like a text written in human language. They showed that this
characteristic can be captured by statistical language models
and can be leveraged for different software engineering tasks,
such as code completion [3] and fault localization [4]. The
latter application proposed by Ray et al. was possible thanks to
the finding that buggy code is less natural (i.e., less predictable)
than correct code [4].

One interesting unanswered question is whether software
refactoring (i.e., the activity of improving code quality without
modifying the system’s external behavior) can be seen as a
process implicitly aiming at improving code naturalness. Intu-
itively, we might think the source code is easier to maintain if it
is more natural, as there are fewer “surprising” and “unfamiliar”
code fragments for developers. Thus, it can be conjectured that
developers focus their refactoring attentions on code exhibiting
low naturalness. If such a conjecture is confirmed, information
about the naturalness of code components could be leveraged
to support refactoring operations (e.g., by identifying code
components in need of refactoring).

We perform a first step in that direction by investigating
whether refactoring operations applied by software developers
result in an improvement of the code naturalness.

We use RMINER [5], a state-of-the-art refactoring miner tool,
to mine 1,448 real refactoring operations performed by software
developers in 619 open source projects. These operations
cover 10 different refactoring types (e.g., move method, extract
class). Once these operations are collected, we employ the
statistical language model proposed by Tu et al. [3] to measure
the naturalness of the code components before and after the
refactoring. This allows us to verify whether different types of
refactoring operations improve the code naturalness. Our results
show that the impact on the code naturalness strongly depends
on the specific type of refactoring operation. For example,
“Extract Method” refactoring is more likely to increase the code
naturalness, while “Pull Up Method” refactoring often leads to
lower naturalness. These results suggest that leveraging code
naturalness for identification of refactoring opportunities is far
from trivial, and highlight the need for additional investigations
in this direction.

II. RELATED WORK

The naturalness of software has received considerable
attention in the software engineering research community. After
the seminal work by Hindle et al. [2], several studies have
investigated the code naturalness from different perspectives.
Tu et al. [3] found that the distribution of repetitive code is
highly skewed in the source code. Lin et al. [6] disclosed that
different parts of source code are not equally repetitive.

Researchers have also studied the relation between natu-
ralness and software defects. Campbell et al. [7] found that
syntax errors are less natural than other code, and this fact can
be used to augment compilers’ ability to locate missing and
extra tokens. Ray et al. [4] evaluated the naturalness of buggy
code and the corresponding fixes by analyzing over 8,000 fix
commits from 10 Java projects. Their results showed that buggy
code is less natural, and the naturalness increases once the bug
is fixed. They also showed that focusing on unnatural code is
cost-effective in finding bugs compared to other state-of-the-art
static bug finders.

The most relevant work is the study conducted by Arima et al.
[8], which uses code naturalness as a metric to evaluate whether
a refactoring operation is effective. With the assumption that
appropriate refactoring should raise the code naturalness, the
authors constructed a gold set of 28 refactoring operations
extracted from JUnit41 by searching for the keywords
“refactor” and “clean” in commit logs and manually filtering out

1https://github.com/junit-team/junit4



those commits containing more than one refactoring. As a result,
the code naturalness increases after 19 out of the 28 refactorings,
which indicates that naturalness might be a potential valid
metric for evaluating the quality of refactoring. Our study,
while having a similar objective (i.e., studying the impact of
refactoring operations on code naturalness) is performed on a
much larger dataset composed of 1,448 refactorings extracted
from 619 systems. We also investigate the impact of refactoring
operations on the code naturalness by considering the type of
implemented refactoring (e.g., move method) as an independent
variable to study (possibly having an effect on the “naturalness”
dependent variable).

III. STUDY DESIGN

Our goal is to investigate whether refactoring operations
increase the naturalness of the refactored code. We assess how
the code naturalness is impacted (i) overall, meaning when
considering all types of refactoring operations together, and
(ii) by specific types of refactoring.

A. Research Question

Our study aims at answering the following research question:
RQ: How does refactoring impact the naturalness of source

code? This RQ assesses how the naturalness of source code
changes after refactoring operations. We also investigate
whether there is an observable difference for the change in
naturalness for different kinds of refactorings. To the best of
our knowledge, this is the first study running such an analysis
on a large dataset while considering specific refactoring types.

The findings of this RQ will shed light on the possibility
of using code naturalness to support the identification of code
components in need of refactoring.

B. Study Context

The study context consists of 619 Java projects on GitHub2,
mined on Nov. 6, 2018, using the following selection criteria:

• Activity level. To exclude inactive projects, the projects
must have at least one commit in the three months
preceding the data collection.

• Popularity. Projects need to have at least 100 forks3 and
100 stars4, to avoid the inclusion of likely “toy-projects”.
Forks and stars serve as two proxies for the popularity of
software repositories on GitHub.

We found 2,663 projects satisfying these constraints. How-
ever, due to the computational cost of our experimental design
that requires retraining the statistical language models assessing
the naturalness several times (details follow), we selected from
this set a random subset of 1,500 projects for our study. We
believe that 1,500 projects still ensure a good generalizability
of our results. After mining refactoring operations from these
repositories, we found 619 projects containing at least one of the
refactoring operations we study (discussed in Section III-C1).
These 619 projects compose our study context.

2https://github.com/
3https://help.github.com/articles/fork-a-repo/
4https://help.github.com/articles/about-stars/

C. Data Collection

To answer our research question and measure code natural-
ness, we first mine refactoring operations from the collected
projects, and then assess the naturalness of the impacted code
components before and after each refactoring commit.

1) Refactoring Mining: We use RMINER [5] to mine the
refactoring operations in the randomly selected 1,500 projects.
RMINER extracts refactoring operations by inspecting two
adjacent commits using an AST-based statement matching
algorithm. RMINER is reported to have a precision of over
0.95 for most refactoring types, except “Change Package” (0.85)
and “Move Field” (0.884). The recall achieved by RMINER
is also fairly high: 0.80 for most refactoring types, except
“Rename Class” (0.711), “Extract & Move Method” (0.412), and
“Move Method” (0.764). Thus, adopting RMINER allows us to
obtain different types of refactorings with considerable accuracy.
While RMINER can detect various types of refactorings,
in this study we only consider those do not requiring the
creation of new source code files (e.g., we exclude “Extract
Class” refactoring), since this avoids the introduction of
confounding factors in the computation of the code naturalness
(i.e., the naturalness of the same files before/after refactoring is
compared). Table I reports the types of refactoring operations
considered in our study.

TABLE I
CONSIDERED REFACTORINGS IN OUR STUDY

Level Refactorings considered

Method Extract Method, Inline Method, Pull Up Method, Push Down
Method, Rename Method, Move Method, Extract and Move
Method

Field Pull Up Field, Push Down Field, Move Field

After obtaining all the commits with refactoring operations,
we filtered out commits in which more than one refactoring
type was applied, again to better isolate and study the effect of
a single type of refactoring operation on the code naturalness.
In the end, we obtained 1,448 refactoring operations from 619
projects, while no relevant refactorings were detected in the
other 881 projects.

2) Naturalness Measurement: Like the work by Tu et al. [3]
and Ray et al. [4], we use cross-entropy to assess the naturalness
of code components. The idea behind cross-entropy is that if a
code snippet is more natural, it will be more likely to appear
in the training corpus. The cross-entropy of a code snippet S
composed by tokens t1...tn of length N is calculated as

HM (S) = − 1

N
log2 PM (S) = − 1

N

N∑
1

log2 P (ti|h)

where PM (S) and P (ti|h) are the probabilities estimated by
the language model M , ti is the token to be predicted, and
h is the preceding tokens followed by ti. In our study, we
adopted the cache language model proposed by Tu et al. [3].
This model combines a traditional n-gram language model and
an added “cache” component to exploit the localness property



of source code. Like other statistical language models, it learns
from a corpus of source code, and then predicts the probability
P of occurrence for each token in the new file. In practice, a
low cross-entropy indicates high naturalness.

To understand how naturalness changes due to refactoring,
we measure the naturalness for every commit that has a
refactoring operation. For each refactoring operation, we
construct a training corpus, composed of all the files in
the commit before the refactoring, excluding the files being
refactored. This corpus is used to compute the cross-entropy of
the excluded files and their corresponding refactored version.

D. Data Analysis

We compare the cross-entropy change caused by each type of
refactoring operation via violin plots. The comparison of cross-
entropy of files before and after refactoring is also performed
via statistical tests by using the Wilcoxon signed-rank test [9],
with results intended as statistically significant at p ≤ 0.05.
We also estimate the magnitude of the differences by using the
effect size r, which can be used for the Wilcoxon signed-rank
test [10]. We follow well-established guidelines to interpret the
effect size: negligible for |r| < 0.10, small for 0.10 ≤ |r| < 0.3,
medium for 0.3 ≤ |r| < 0.5, and large for |r| ≥ 0.5 [11].

IV. PRELIMINARY RESULTS

We first provide an overview of how code naturalness
changes after refactoring with statistical analysis, and then
give concrete examples of refactoring activities that had
a positive/negative effect on code naturalness. Finally, we
compare our results with those achieved by Arima et al. [8].

A. Statistical Analysis of Results

Table II reports the impact of the 1,448 detected refactoring
operations on the cross-entropy of the involved code com-
ponents. Despite the quite large set of refactoring operations
considered in our study, it is worth noticing that the mined refac-
torings are not equally distributed regarding their refactoring
type. Indeed, “Extract Method” and “Rename Method” account
for 66.0% of the total refactorings. Among all refactoring types,
“Push Down Method” and “Push Down Field” are the least
performed, and account only for 1.0% of the overall dataset.
In the following analyses, these two types of refactorings are
excluded due to the low number of occurrences.

For all these refactorings, we calculated the cross-entropy
change (i.e., the difference between the cross-entropy after
refactoring and cross-entropy before refactoring) of the file
being refactored. When reading the table, we have to be aware
of the fact that high cross-entropy stands for low naturalness.
Therefore, when the cross-entropy change is above zero, the
naturalness of the code actually drops. Similarly, the naturalness
increases when the cross-entropy change is negative.

Table II shows that overall, although the decrease of
cross-entropy (increase of naturalness) is more common than
the increase of cross-entropy (decrease of naturalness), the
difference is not substantial (i.e., 50.8% vs 44.5%). When it
comes to specific refactoring types, “Inline Method”, “Pull

Up Method”, “Rename Method”, and “Move Method” are
more likely to reduce the code naturalness. Among these five
refactoring types, “Pull Up Method” has the highest possibility
(73.3%) to reduce the naturalness. All other refactoring types
tend to increase the code naturalness, despite the fact that there
is still a large percentage of cases in which the naturalness
decreases. Thus, our preliminary analysis of the achieved results
does not show any clear relationship between refactoring and
code naturalness.

To better understand the impact of refactoring operations on
the code naturalness, we applied statistical tests to the cross-
entropy values before and after refactoring for all the files
being refactored. In Table III, we can find that for half of the
refactoring types, there is no statistically significant difference
(p-value ≥ 0.05) between the cross-entropy before and after
refactoring. Meanwhile, the magnitude of the difference is
mostly limited (with negligible or small effect size). The
only exception here is the “Pull Up Method” refactoring. The
comparison of cross-entropy values result in a statistically
significant difference (p-value < 0.05), with a medium effect
size. The result is in line with our findings from Table II.

To further understand how the impact of different types of
refactoring on code naturalness differs, we also visualize the
cross-entropy difference with violin plots in Fig. 1. In the
violin plots, the thickness of the outer layer represents how
likely the cross-entropy change will fall into this value. In the
center of each violin plot, the white dot represents the median;
the thick black bar represents the interquartile range, and thin
black line represents the 95% confidence interval.

Looking at Fig. 1 we can see that “Extract Method”, “Pull
Up Field”, ”Rename Method”, and “Extract And Move Method”
refactorings are the least likely to impact the code naturalness,
as most of the cross-entropy changes are close to zero. “Pull
Up Method” can often bring large naturalness change to files,
especially by reducing the code naturalness.

B. Examples of Cross-Entropy Change

To gain a more intuitive impression on how refactoring
impacts the code naturalness, we extracted some examples
from our dataset.

“Inline Method” refactoring was performed on the class
“View” from the project “Carbon”5. In this refactoring op-
eration, the calls to method “setTint” were replaced with
the body of “setTint”, consisting in a call to the method
“setTintList”. The replaced method “setTint” was also
deleted in the class. After this refactoring, the cross-entropy of
this class file increased from 2.418 to 2.430, thus resulting in a
reduction of code naturalness. Intuitively, since the refactored
method was used multiple times in the class, one might think
that the increase of cross-entropy was caused by the fact that the
replaced token “setTint” is much more common (i.e., has a
lower cross-entropy) in the source code than “setTintList”.
We inspected the cross-entropy of each token in the class
before and after the refactoring to verify this assumption.

5https://goo.gl/NBRBah



TABLE II
DETECTED REFACTORINGS AND THEIR IMPACT ON THE CODE NATURALNESS

Refactoring type total # cross-entropy increased # cross-entropy unchanged # cross-entropy decreased

Extract Method 488 174 (35.7%) 0 (0.0%) 314 (64.3%)
Inline Method 57 37 (64.9%) 0 (0.0%) 20 (35.1%)
Pull Up Method 45 33 (73.3%) 0 (0.0%) 12 (26.7%)
Push Down Method 5 2 (40.0%) 0 (0.0%) 3 (60.0%)
Rename Method 468 220 (47.0%) 68 (14.5%) 180 (38.5%)
Move Method 126 76 (60.3%) 0 (0.0%) 50 (39.7%)
Extract and Move Method 162 60 (37.0%) 0 (0.0%) 102 (63.0%)
Pull Up Field 18 7 (38.9%) 0 (0.0%) 11 (61.1%)
Push Down Field 10 4 (40.0%) 0 (0.0%) 6 (60.0%)
Move Field 69 32 (46.4%) 0 (0.0%) 37 (53.6%)

Sum 1,448 645 (44.5%) 68 (4.7%) 735 (50.8%)
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Fig. 1. Cross-entropy change after refactoring

TABLE III
STATISTICAL TESTS OF FILE CROSS-ENTROPY BEFORE AND AFTER

REFACTORING

Refactoring type P-Value Effect Size

Extract Method < 0.001 0.180 (small)
Inline Method 0.202 0.119 (small)
Pull Up Method < 0.001 0.414 (medium)
Rename Method 0.177 0.044 (negligible)
Move Method 0.029 0.138 (small)
Extract and Move Method < 0.001 0.213 (small)
Pull Up Field 0.122 0.258 (small)
Move Field 0.727 0.030 (negligible)
Overall 0.453 0.003 (negligible)

However, we found out that the cross-entropy of the tokens
“setTint” and “setTintList” are actually similar (whose
value varies in different token positions due to the difference of
preceding tokens). As a matter of fact, the removed tokens with
significantly lower cross-entropy were those composing the

method declaration, such as “public” and “void”. Indeed,
since the idea behind naturalness is based on the repetitiveness
of tokens, these reserved keywords often have a much lower
cross-entropy. One interesting direction to explore in future
is how the cross-entropy of identifiers, which are the tokens
carrying semantic information, changes during refactoring.

“Extract Method” refactoring was performed on the class
“CacheHandler” from the project “AutoLoadCache”6. In
this refactoring operation, multiple lines of code in the method
“proceedDeleteCacheTransactional” were moved to
a newly created method “clearCache”, and these lines were
replaced with a call to “clearCache”. After refactoring,
the cross-entropy of this class file was reduced to 3.776 from
3.813, namely the code naturalness increased. “Extract Method”
is the opposite operation of “Inline Method”, therefore, it is
unsurprising that the naturalness change caused by “Extract
Method” displays an opposite trend. Similarly, the major

6https://goo.gl/r4FE26



difference between the versions (before and after refactoring)
is the extra tokens needed for declaring the new method.

C. Comparison with the Study by Arima et al.

We compare the results we achieved with the results from the
study by Arima et al. [8]. Some interesting facts are spotted.

In our study, only 50.8% of the total refactorings increase
the code naturalness, which is much lower than what has
been observed in [8] (67.9%). The reason behind this different
finding could be explained by the different datasets employed
in the two studies. First, the dataset used in [8] is composed of
only 28 refactorings (as compared to the 1,448 considered in
our study), thus possibly indicating peculiarities of the specific
refactoring operations considered. Second, the 28 refactorings
used in [8] have all been mined from a single, well-known
project, namely JUnit 4, while in our study we extracted the
studied refactorings from a variegated set of 619 projects. It is
possible that the “quality” of the refactorings applied in JUnit
4 is higher, thus resulting in a naturalness increase that we did
not observe in our dataset. Clearly, this is only an assumption,
which needs to be carefully verified. However, it also indicates
a direction to work with: We might need to better understand
the association between code quality and naturalness, which is
not fully disclosed in the research community.

In the work of Arima et al. [8], 7 out of 9 (77.8%)
“Extract Method” refactorings increase the code naturalness,
which is in line with our result: 64.3% of the “Extract
Method” refactorings result in increased naturalness. Although
no significant difference between the cross-entropy before and
after refactoring was found during our statistical analysis, there
are indications that “Extract Method” refactoring might help
in improving the naturalness of code. Similarly, 2 out of 3
“Inline Method” refactorings in their study lead to a naturalness
decrease, meanwhile, the same trend applies to 64.9% of our
cases. However, since they inspected a smaller number of
“Inline Method” refactorings, much more refactorings need to
be examined to make a solid comparison.

V. THREATS TO VALIDITY

Threats to construct validity concern the relation between
theory and observation. In this work, we use RMINER to detect
refactorings. While the precision achieved by this tool is very
high [5], we are aware that our results can be affected by
the presence of false positives. Also, RMINER can identify a
specific set of refactoring operations, while the definition of
refactoring is broader.

Threats to internal validity concern external factors we
did not consider that could affect the variables and the relations
being investigated. In our study, when calculating the entropy
for source code, we did not experiment with all possible
configurations of the used language model. An adapted 3-gram
model with an additional cache is used. We do not expect to
observe a significant difference in the overall result trend with
different configurations.

Threats to external validity concern the generalizability
of our findings. While we investigated a large number of

refactoring operations, we are aware that only Java and open
source software projects are considered in our study.

VI. CONCLUSION AND FUTURE WORK

We investigated how refactoring impacts the naturalness of
source code by inspecting 1,448 refactoring operations from
619 Java projects. We studied the impact of refactoring types on
the naturalness of the modified code components. Our results
show that refactorings do not necessarily make source code
more natural, and that naturalness changes in different ways
for different types of refactorings.

Our study serves as the first step towards using naturalness
information to support refactoring activities. In the future, we
will conductmore thorough empirical studies to understand the
correlation between refactoring quality and code naturalness.
That is, we would like to examine whether naturalness can be a
good indicator for effective refactorings with high quality code.
We will also investigate the possibility of use the naturalness of
source code combined with other metrics, such as Chidamber
and Kemerer metrics [12], to support the identification of code
components in need of refactoring.
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