
Automated Identification of
On-hold Self-admitted Technical Debt

Rungroj Maipradit∗, Bin Lin†, Csaba Nagy†

Gabriele Bavota†, Michele Lanza†, Hideaki Hata∗, Kenichi Matsumoto∗
∗Nara Institute of Science and Technology, Japan

†Software Institute, USI Università della Svizzera Italiana, Switzerland

Abstract—Modern software is developed under considerable
time pressure, which implies that developers more often than
not have to resort to compromises when it comes to code that is
well written and code that just does the job. This has led over
the past decades to the concept of “technical debt”, a short-term
hack that potentially generates long-term maintenance problems.
Self-admitted technical debt (SATD) is a particular form of
technical debt: developers consciously perform the hack but also
document it in the code by adding comments as a reminder
(or as an admission of guilt). We focus on a specific type of
SATD, namely “On-hold” SATD, in which developers document
in their comments the need to halt an implementation task due
to conditions outside of their scope of work (e.g., an open issue
must be closed before a function can be implemented).

We present an approach, based on regular expressions and
machine learning, which is able to detect issues referenced in code
comments, and to automatically classify the detected instances
as either “On-hold” (the issue is referenced to indicate the
need to wait for its resolution before completing a task), or as
“cross-reference”, (the issue is referenced to document the code,
for example to explain the rationale behind an implementation
choice). Our approach also mines the issue tracker of the projects
to check if the On-hold SATD instances are “superfluous” and
can be removed (i.e., the referenced issue has been closed, but
the SATD is still in the code). Our evaluation confirms that
our approach can indeed identify relevant instances of On-hold
SATD. We illustrate its usefulness by identifying superfluous On-
hold SATD instances in open source projects as confirmed by the
original developers.

Index Terms—Self-admitted technical debt, empirical software
engineering, issue

I. INTRODUCTION

Technical debt (TD) was first mentioned as a concept by
Cunningham close to 30 years ago [1], when he wrote the
following lines: “Shipping first time code is like going into
debt. A little debt speeds development so long as it is paid
back promptly [...] The danger occurs when the debt is not
repaid. Every minute spent on not-quite-right code counts as
interest on that debt. Entire engineering organizations can be
brought to a stand-still under the debt.”

In simple words, TD is a short-term “hack” (often induced
by industrial reality, which dictates that either time and/or
money are short) with long-lasting consequences if not prop-
erly handled. Since developers naturally keep working on new
parts and do not revisit something unless it is strictly necessary,
very often TD results, in the long run, in low maintainability
and poor performance [2].

Potdar and Shihab extended the concept of TD to the notion
of self-admitted technical debt (SATD) [3], performed inten-
tionally by developers, but mentioned/admitted as comments in
the source code. They found that SATD is present, depending
on the system, in 2.4% to over 30% of the files and that only
26%-63% gets removed, i.e., a non-SATD often remains in
the code. Zampetti et al. furthermore found that 20% - 50%
of the removals were accidental and are even unintended [4].

Maldonado and Shihab categorized SATD into 5 types:
design debt, defect debt, documentation debt, requirement
debt, and test debt [5], with design debt and requirement debt
being the most common ones. Xavier et al. also found that
SATD not only manifests itself as comments in the source
code, but is also present in issue reports [6].

We focus on a particular type of SATD, first introduced
by Maipradit et al. [7]: “On-hold SATD”, defined as self-
admitted technical debt due to a waiting condition for an
external event to happen before the technical debt can be
removed. In particular, this paper focuses on On-hold SATD
with references to issues.

(a) A SATD code comment referencing an issue

(b) A referenced issue report (https://tinyurl.com/ybunu2dj)

Fig. 1: Motivating Example

Motivating Example. Fig. 1-(a) shows code from Apache
Hadoop. The comment in the code indicates that an action
will be taken once a condition is fulfilled, i.e., the closing of
issue 6223. As we see from Fig. 1-(b), the issue has in fact
already been closed, but the On-hold SATD was not removed,
thus creating confusion to anyone inspecting the code.

In essence, On-hold SATD are intentionally reminders left
in the source code whose sole purpose is to be removed.

We present a large-scale empirical study to ascertain
whether (i) On-hold SATD can be automatically detected,
and (ii) it is possible to identify cases in which the On-
hold SATD should be removed, since the “waiting condition”
has been fulfilled, thus making the SATD a form of “wrong
documentation” in the code. Besides quantitatively evaluating
the approaches we built to identify and remove On-hold SATD
instances, we also show its usefulness in practice by collecting
feedback from developers of open source projects.

II. RELATED WORK

A. Empirical Studies on (self-admitted) Technical Debt

Storey et al. [8] studied how annotations in code comments
(e.g., TODO, FIXME) are used by developers to keep track
of tasks. Several types of activities are supported by these
annotations, e.g., the usage of TODOs to ask questions to other
developers during code comprehension. These annotations are
a subset of the ones used nowadays to detect SATD.

Guo et al. [9] studied a specific technical debt instance
to assessing its impact on the project costs. Their findings
confirmed the harmfulness of technical debt, showing that the
delayed task resulted in tripled implementation costs.

Klinger et al. [10] investigated how decisions to acquire
technical debt are made within IBM by interviewing four
technical architects. They found that technical debt is often due
to imposed requirements to meet a specific deadline sacrificing
quality. Also, the interviewed architects reported a lack of
effective communication between technical and non-technical
stakeholders involved in technical debt management.

Lim et al. [11] interviewed practitioners (35 in this case) to
investigate their perspective on TD. They found that most of
the participants were familiar with the notion of TD and they
do consider it as a poor programming practice, but more as
an intentional decision to trade off competing concerns during
development [11]. Practitioners also highlighted the difficulty
in measuring the cost of TD. Similarly, Kruchten et al. [12]
reported their understanding of the technical debt in industry
as the result of a four-year interaction with practitioners.

Spinola et al. [13] asked 37 practitioners to validate 14
statements about TD (e.g., “The root cause of most technical
debt is pressure from the customer” [14]). The statement
achieving the highest agreement was “If technical debt is not
managed effectively, maintenance costs will increase at a rate
that will eventually outrun the value it delivers to customers”.

Kruchten et al. [15] provided theoretical foundations to the
concept of TD by presenting the “technical debt landscape”,
classifying TD as visible or invisible and highlighting the debt
types causing evolvability and maintainability issues. Alves
et al. [16] proposed an ontology of terms on technical debt.

Potdar and Shihab [3] introduced the notion of SATD by
mining five software systems to investigate (i) the amount of
SATD they contain, (ii) the factors promoting the introduction
of the SATD, and (iii) how likely is the SATD to be removed.
Bavota and Russo [17] performed a differentiated replication
of that study involving a larger set of subject systems (159),
confirming the findings of the original study.

Zazworka et al. [18] studied the overlap between the techni-
cal debt instances detected by automated tools and by manual
inspection, finding very little overlap.

Maldonado and Shihab [19] used the TD classification by
Alves et al. [16] to investigate the types of SATD more dif-
fused in open source projects. They identified 33k comments
in five software systems reporting SATD. These comments
have been manually read by one of the authors who found as
the vast majority of them (∼60%) reported design debt.

Wehaibi et al. [20] studied the relationship between SATD
and software quality, finding that files with SATD do not have
more defects compared to files without SATD, but that changes
in the context of SATD are more complex. Sierra et al. [21]
conducted a survey about SATD research, categorizing it into:
detection, comprehension, and repayment. They found a lack
of research related to repayment and management of SATD.

B. Automatic detection/management of SATD

In the study by Potdar and Shihab [3], the authors identified
SATD using 62 textual patterns. The patterns can be matched
in code comments of a previously unseen project to identify
SATD. Farias et al. [22] built on top of these 62 patterns and
developed a model called CVM-TD (Contextualized Vocabu-
lary Model for identifying TD) that exploits combinations of
the patterns to identify different types of technical debt.

Maldonado et al. [23] presented an approach to automat-
ically identify design and requirement SATD by applying
Natural Language Processing (NLP) on code comments. A
study performed on ten open source projects showed the
superiority of their approach as compared to the state-of-the-
art, represented at that time by the above-described pattern-
based techniques. Wattanakriengkrai et al. [24] developed a
classifier to identify design and requirements SATD using N-
gram IDF and automated machine learning on Maldonado’s
dataset. Comparing the result with the previous study [23],
the classifier outperforms the NLP approach in both design
and requirement. A similar idea has also been exploited
by Huang et al. [25] that leveraged text-mining for SATD
identification. Also in this case, the approach performed better
than the pattern-based approach by Potdar and Shihab [3]. This
approach is also available as an Eclipse plug-in [26].

Ren et al. [27] proposed an approach based on Convolution
Neural Networks to classify code comments into SATD or
non-SATD. An experiment performed on ten projects and 63k
comments showed that their approach outperforms text mining
techniques both for within-project and cross-project prediction.

Zampetti et al. [28] presented TEDIOUS (TEchnical Debt
IdentificatiOn System), an approach to train a recommender to
suggest developers writing new code when to self-admit design
TD, or improve the code being written. TEDIOUS achieves
an average precision of ∼50%. Yan et al. [29] proposed
a model to determine whether a change introduces SATD.
They manually labeled changes that introduced SATD in the
past and built a model exploiting 25 features to characterize
SATD-introducing changes. An empirical study across ∼100k
changes reported an AUC for the model of 0.82.

TABLE I: Details of the projects in our dataset. SLOC is calculated on Java files using SLOCCounts [30].

Remaining comments # Removed comments
Project Version ITS SLOC # Contributors that refer to issues that refer to issues

Apache Ant 1.10.7 Bugzilla 144,966 47 27 22
Apache Camel 3.0.0 Jira 1,267,905 544 42 62
Apache Dubbo 2.7.4 Github 148,377 268 8 4
Apache Hadoop 2.10.0 Jira 1,885,604 239 272 269
Apache Jmeter 5.2.1 Bugzilla 142,030 19 116 136
Apacha Kafka 2.4.0 Jira 319,990 606 24 21
Apache Log4j 1.2.17 Bugzilla 30,608 7 6 3
Apache Logging-log4j2 2.13.0 Jira 159,353 76 179 153
Apache Tomcat 10.0.0 Bugzilla 341,192 31 82 73
Mockito 3.3.10 Github 48,292 173 15 16

Total - - 4,488,317 2,010 771 759

TABLE II: Regular expressions to identify issue in comments

ITS Regular expression

Bugzilla (?<![A-Za-z])(?:bug|projectname|bugzilla|bz)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., Bug 34383
https?:\/\/[\w._/]*show_bug.cgi\?id=\d+
URLs, e.g., https://bz.apache.org/bugzilla/show_bug.cgi?id=51687

Github (?<![A-Za-z])(?:bug|issues?)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., issue 55
https?:\/\/github.com/[\w._/]*\/issues\/\d+
URLs, e.g., https://github.com/apache/dubbo/issues/3251

Jira (?<![A-Za-z])(?:bug|projectname)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs, e.g., HADOOP-7234

III. APPROACH

We aim to build a classifier which automatically detects On-
hold SATD and indicates whether it is ready to be removed.
To achieve this goal, we took the following four steps (Fig. 2):
1) issue reference detection, 2) dataset creation, 3) data pre-
processing, and 4) On-hold SATD classification.

dataset creation

issue reference detection

comment
extraction

project
selection

data preprocessing

term
abstraction lemmatization

special
character
removal

on-hold SATD classification

n-gram
feature

extraction
classifier
selection

condition
checking

manual
classification

issue
identification

Fig. 2: Approach for On-hold SATD detection and removal

A. Issue Reference Detection

To detect On-hold SATD, our first step is to locate the code
comments referring to issues.

1) Project Selection: We selected ten open source projects
that consistently used for their entire change history a specific
issue tracking system (ITS). This allowed us to run our study
without the risk of missing important information due to the
migration between different issue tracker systems (e.g., starting
on JIRA and then moving to the GitHub issue tracker). Table I
lists the projects used in this study.

2) Comment Extraction: We iterated over the commits in
the repositories of the selected projects, and extracted all single
line comments (e.g., // ...) and multi-line comments (e.g., /*
... */) from Java files. If multiple comments are next to each
other (e.g., /* ... */ // ...) they are considered as a single block
of comments. Comments from test files are ignored, as issue
references there are most likely to serve as explanations of
what developers are testing, instead of SATD.

3) Issue Identification: Issue references are identified using
regular expressions to match issue IDs and issue URLs.
Table II shows the regular expressions used for each issue
tracking system. For each identified issue reference, we also
recorded its life cycle: We iterated over the commit history and
extracted the date when the issue reference was first introduced
in the comment, and in case, when it was removed.

From the 10 selected projects, we identified 1,530 comments
containing issue references, among which 759 had already
been removed, while the remaining 771 still remain in the
latest commit by the date of data collection.

TABLE III: Regular expressions for term abstraction

String ITS Regular expression

abstractissueid Bugzilla (?<![A-Za-z])(?:bug|projectname|bugzilla|bz)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs
https?:\/\/[\w._/]*show_bug.cgi\?id=\d+
URLs

Github (?<![A-Za-z])(?:bug|issues?)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs
https?:\/\/github.com/[\w._/]*\/issues\/\d+
URLs

Jira (?<![A-Za-z])(?:bug|projectname)[-](?:#)?\d+(?:\.[0-9xX*]+)*
issue IDs
https?:\/\/issues.apache.org/\/jira\/browse\/(?:projectname)-\d+
URLs

abstracturl — https?:\/\/(www\.)?[-a-zA-Z0-9@:%._\+˜#=]{2,256}\.[a-z]{2,6}\b
([-a-zA-Z0-9@:%_\+.˜#?&//=]*)

B. Dataset Creation

To build the On-hold SATD classifier, we created a dataset
for training and testing, based on the issue-referring comments
collected in our previous step. For each of the 1,530 comments,
the first and the second author independently labeled whether it
is an actual instance of On-hold SATD or, instead, it is used as
cross-reference. We evaluated the inter-rater reliability with the
Cohen’s kappa coefficient, and the score of 0.748 demonstrates
a substantial agreement between the two labelers. The third
author resolved labeling conflicts. As a result, we got 133
On-hold SATD and 1,397 cross-reference comments.

Table IV summarizes the annotation results. 133 (8.7%) of
the issue-referring comments are instances of On-hold SATD.

TABLE IV: Statistics of annotated comments containing issue
references

On-hold SATD Cross-reference Total

Remaining comments 40 731 771
Removed comments 93 666 759

Total 133 1,397 1,530

C. Data Preprocessing

Before extracting features from the comments and feeding
them into the classifier, we performed three preprocessing
steps: 1) term abstraction, 2) lemmatization, and 3) special
character removal.

1) Term Abstraction: For all the comments, we abstracted
issue IDs and hyperlinks referring to issues to the string
“abstractissueid”, while the hyperlinks unrelated to
issues were abstracted to “abstracturl”. This is done
to eliminate the impact of issue IDs and hyperlinks during
classification, as we are not interested in their real content.
Table III summarizes the regular expressions we used to
extract relevant issue IDs and hyperlinks for different issue
tracking systems.

2) Lemmatization: We applied lemmatization with the
Spacy natural language processing tool [31], which normalizes
words with the same root but different surfaces into the same

format [32]. For example, the words “sang”, “singing”, and
“sings” will be converted into “sing”.

3) Special character removal: We removed all non-English
and non-numeric characters using the regular expression
[ˆA-Za-z0-9]+.

For our study we did not apply stop word removal, a
commonly used text preprocessing step, as it might remove
some keywords important for identifying On-hold SATD, such
as “when” and “until”.

D. On-hold SATD Classification
After preprocessing, we extracted n-gram features from the

comments and used them to train a classifier to identify On-
hold SATD. We also checked issue status and issue resolution
to determine whether an On-hold SATD comment is ready to
be removed.

1) N-gram Feature Extraction: Similar to another SATD
classification approach by Wattanakriengkrai et al. [24], we
extracted n-gram features by applying n-gram IDF [33], [34].
N-gram IDF is a theoretical extension of IDF (Inverse Docu-
ment Frequency). The traditional IDF approach assigns more
weight to terms occurring in fewer documents, which does not
work well for n-grams. For example, “Leonardo da is” might
have higher weight than “Leonardo da Vinci”. N-gram IDF is
designed to address this issue and can determine the dominant
n-grams and extract key terms of any length [33], [34]. In this
study, we extracted n-grams from SATD comments using the
library n-gram weighting scheme [35] with default settings.
We obtained the list of all valid n-gram terms containing up
to 10-gram terms. In total, we receive 644 terms of n-grams.

2) Classifier Selection: After extracting the n-gram terms,
we build a classifier to identify bug referencing comments into
On-hold SATD or not. While there many different algorithms
available for supervised classification, it is hard to decide
which one to pick, as different datasets and hyper-parameter
settings might both impact the performance of these algo-
rithms. Automated machine learning addresses this problem
by running multiple classifiers with different parameters to
optimize performance. In this study, we used auto-sklearn
[36], which includes 15 classification algorithms, 14 feature
preprocessing and 4 data preprocessing techniques [36].

3) Condition Checking: After identifying the On-hold
SATD using our classifier, our program automatically checks
the referred issue status and resolution to decide whether the
SATD is ready to be removed. In the issue tracking system, if
the status of the referred issue is set to “resolved”, “closed”,
or “verified”, and the field of resolution (if applicable) is set
to “fixed”, we consider it ready for removal.

IV. STUDY DESIGN

The goal of this study is to evaluate the accuracy of
our approach for On-hold SATD identification and removal.
Moreover, we are interested in the evolution of On-hold SATD
in open source projects. The context of the study consists of
1,530 code comments containing issue references, extracted
from the previously presented 10 open source projects.

A. Research Questions

In this study, we answer the following three research ques-
tions (RQs):

• RQ1: What is the accuracy of our approach in identifying
On-hold SATD? This RQ investigates the performance
of our classifier in identifying On-hold SATD. We also
examined the impact of oversampling, different features
and machine learning algorithms on the performance of
our classifier:

– RQ1.1: How do n-grams impact the performance
of our classifier as compared to Bag-Of-Words fea-
tures?

– RQ1.2: How does oversampling impact the perfor-
mance of the classifier?

– RQ1.3: How do different machine learning algo-
rithms impact the performance of the classifier?

• RQ2: How does On-hold SATD evolve in open source
projects? To gain deeper insights on how On-hold SATD
evolves in the projects, with this RQ we inspect the
duration of existence of On-hold SATD in software
projects, and the time it takes to address SATD after the
relevant issue is resolved.

• RQ3: To what extent can our approach identify “ready-
to-be-removed” On-hold SATD? This RQ empirically
evaluates the reliability of our approach in identifying
On-hold SATD which should be removed, since it was
already “paid back”.

B. Context Selection & Data Collection

In this study, we used the dataset presented in Section III-B,
which contains 1,530 annotated comments containing issue
references.

To answer RQ1, we built a classifier using auto-sklearn with
n-grams extracted by n-gram IDF [24] as features. N-grams
were extracted from On-hold SATD comments only. N-grams
from Cross-reference comments are not included because we
want to extract important patterns to detect on-hold SATD,
and we use these patterns to discriminate between On-hold
SATD and Cross-reference. We performed a ten-fold cross
validation: We divided the 1,530 issue-referring comments into

ten different sets, each one composed of 153 comments. Then,
we iteratively used one set as the test set, while the remaining
1,377 comments were used for training.

To answer RQ1.1, we ran a different classifier implementa-
tion on the dataset, using Bag-Of-Words (BOW) as features.

To answer RQ1.2, we applied an oversampling technique
(i.e., SMOTE) to our training set, and then compared the
results achieved by our classifier with/without oversampling.

To answer RQ1.3, we built three variants of the classifier
with different machine learning algorithms: Naive Bayes,
Support Vector Machine (SVM), and K-Nearest Neighbors
(KNN).

To answer RQ2, we inspected the removed issue-referring
comments for both On-hold and cross-reference comments.
We first checked the time interval between the introduction
and the removal of these comments. Then, for the instances
referring issues that have been solved, we compute the differ-
ence between the issue resolution time and the corresponding
On-hold SATD removal event.

To answer RQ3, we identified the On-hold SATD comments
which are ready to be removed from the 40 still remaining
On-hold issue-referring comments, based on the corresponding
issue status and resolution, as described in Section III-D3. In
total, we identified 10 “ready-to-be-removed” On-hold SATD
comments. By the time we started working on RQ3, 4 of
10 comments had already been removed by developers (three
were removed thanks to code changes addressing the On-hold
SATD, while one was removed due to the deletion of the
file containing it). We reported the remaining six “ready-to-
be-removed” On-hold SATD comments to the developers by
creating issue reports in the respective issue tracker. In the
issue report, we inform developers why the On-hold SATD
comments should be removed and where they are located. An
example of the issue reports can be seen in Fig. 3.

Fig. 3: An example issue report.

C. Data Analysis

To answer RQ1 we compare the precision, recall, F1-
score, and area under the ROC curve (AUC) of each experi-
mented approach in classifying issue-referring comments (as
belonging or not to On-hold SATD) for the dataset of 1,530
comments.

TABLE V: Performance of classifiers in identifying On-hold SATD

Original approach BOW as feature With Oversampling Different ML algorithms

n-gram +
auto-sklearn

BOW +
auto-sklearn

n-gram + oversampling +
auto-sklearn

n-gram +
Naive Bayes

n-gram +
SVM

n-gram +
KNN

Precision 0.79 0.69 0.38 0.64 0.87 0.88
Recall 0.70 0.68 0.48 0.56 0.38 0.15
F1-score 0.73 0.67 0.41 0.59 0.51 0.25
AUC 0.97 0.94 0.87 0.81 0.95 0.76

TABLE VI: Statistical results of performance comparisons of classifiers

P-value (Precision) Effect size (Precision) P-value (Recall) Effect size (Recall)

n-gram+auto-sklearn vs BOW+auto-sklearn < 0.01 0.48 (large) 0.32 -

n-gram+auto-sklearn vs n-gram+oversampling+auto-sklearn < 0.01 0.92 (large) 0.01 0.67 (large)

n-gram+auto-sklearn vs n-gram+Naive Bayes 0.06 - 0.03 0.58(large)
n-gram+auto-sklearn vs n-gram+SVM 0.30 - 0.03 0.8 (large)
n-gram+auto-sklearn vs n-gram+KNN 0.30 - 0.03 1.0 (large)
n-gram+Naive Bayes vs n-gram+SVM 0.06 - 0.03 0.58 (large)
n-gram+Naive Bayes vs n-gram+KNN 0.30 - 0.03 1.0 (large)
n-gram+SVM vs n-gram+KNN 0.31 - 0.03 0.74 (large)

The comparisons are also performed via the Mann-Whitney
test [37], with results intended as statistically significant at α =
0.05. For RQ1.3, to control the impact of multiple pairwise
comparisons (e.g., the precision of auto-sklearn is compared
with Naive Bayes, SVM, and KNN), we adjust p-values with
Holm’s correction [38]. We estimate the magnitude of the
differences by using the Cliff’s Delta (d), a non-parametric
effect size measure [39]. We follow well-established guidelines
to interpret the effect size: negligible for |d| < 0.10, small for
0.10 ≤ |d| < 0.33, medium for 0.33 ≤ |d| < 0.474, and large
for |d| ≥ 0.474 [39].

To answer RQ2, we present via violin plots the life spans of
both On-hold SATD and cross-reference comments, as well as
the duration between the resolution of issues and the removal
of corresponding SATD comments.

To answer RQ3, we qualitatively analyze the developers’
feedback.

V. RESULTS

A. RQ1: What is the accuracy of our approach in identifying
On-hold SATD?

Table V reports the average precision, recall, F1-score, and
AUC of each experimented classifier implementations during
10-fold evaluation.

Table VI reports the statistical results of comparisons be-
tween different classifier implementations.

Fig. 4 also shows the results of the 10-fold evaluation for
each experimented classifier in terms of precision, recall, F1-
Score, and AUC.

As can be seen from Table V, the precision, recall, and F1-
score achieved by our approach (“n-gram + auto-sklearn”) are
all between 0.7 to 0.8, while AUC is as high as 0.97. This
result demonstrates the reliability of our approach in On-hold
SATD detection.

To gain a better understanding of how our classifier works,
we list the important n-gram features which frequently appear
in On-hold SATD comments in Table VII.

TABLE VII: N-gram features which frequently appear in On-
hold SATD comments

N-gram features Frequency

‘after’, ‘abstractissueid’ 20
‘once’, ‘abstractissueid’ 18
‘for’, ‘now’ 12
‘temporary’, ‘fix’ 10
‘workaround’ 10
‘this’, ‘be’, ‘a’, ‘temporary’ 8
‘via’, ‘abstractissueid’ 7
‘be’, ‘commit’ 7
‘can’, ‘be’, ‘remove’ 7
‘remove’, ‘after’, ‘abstractissueid’ 5

These features help discriminate On-hold SATD from cross-
reference. We can see that n-grams such as “once abstractis-
sueid”, “this be a temporary”, and “remove after abstractis-
sueid” are especially important for identifying On-hold SATD.

Additionally, we also illustrate some classification results
in Table VIII. From the two true positive examples (correctly
identified as On-hold SATD by our approach), we can clearly
see the patterns including “workaround”, “temporary fix”
and “remove after abstractissueid”, which can be related to
Table VII. Therefore, it is not surprising that our classifier
can correctly identify these On-hold SATD comments.

If we take a look at the two false negative examples
(On-hold SATD classified as cross-reference), we find that
phrases like “to be revisit” and “until abstractissueid” are
probably useful n-grams for identifying On-hold SATD. Due to
absence or infrequent occurrence, these n-grams are not used
as features for the classifier. Expanding the training set can be
a potential way for addressing the n-gram feature limitations.

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

1.0

Precision

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

1.0

Recall

2 4 6 8 10
round

0.0

0.2

0.4

0.6

0.8

F1-score

2 4 6 8 10
round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
AUC

BOW+auto-sklearn
n-gram+auto-sklearn

n-gram+oversampling+auto-sklearn
n-gram+Naive Bayes

n-gram+SVM
n-gram+KNN

Fig. 4: Results of each round in 10-fold evaluation for different classifier implementations

In the two false positive examples (cross-reference classified
as On-hold SATD), we can see that the n-gram terms like
“todo after abstractissueid” and “todo remove” can be actually
matched, and our classifier misclassified them into On-hold
SATD. However, if we check the comments carefully, we
can find that in the first sentence, it is clear that the issue
has already been resolved, however, for some reason the
developers decided to say “keeping it for now”, where “it”
refers to YarnException. In the second sentence, what
follows “todo remove” is actually not a reference to an issue,
but a reference to a version. Some heuristic rules might help
our classifier to better deal with these cases.

To understand how n-grams impact the performance of our

classifier as compared to Bag-Of-Words (BOW) features, we
inspect the first two columns of Table V, and the first row
of Table VI. Using n-grams as features leads to a higher
precision with a statistically significant difference and a large
effect size. As for the recall, while the average value is
higher when using n-grams, the performed analysis does not
indicate a statistically significant difference. We conclude that
compared to BOW features, n-grams lead to a significantly
higher precision.

To understand how oversampling impacts the performance
of the classifier, we inspect the first and the third column of
Table V, as well as the second row of Table VI.

TABLE VIII: Example of classification results of our approach

Type Comment

True TODO: workaround (filling fixed bytes), to remove after HADOOP-11938

Positive ... This is a temporary fix ... See the discussion on HDFS-1965.

False TODO: Temporarily keeping ... This has to be revisited as part of HDFS-11029.

Negative placeholder for javadoc to prevent broken links, until HADOOP-6920

False TODO: after MAPREDUCE-2793 YarnException is probably not expected here anymore but keeping it for now ...

Positive ... (CAMEL-9657) [TODO] Remove in 3.

From the tables we can observe that the classifier obtains
a statistically significant higher precision and recall when
oversampling is not applied. Meanwhile, the effect sizes for
both precision and recall comparisons are large. Indeed, after
applying oversampling, the average precision, recall, F1-score,
and AUC drop by around 40%, 20%, 30%, and 10%, respec-
tively. We conclude that oversampling reduces the performance
of our classifier in identifying On-hold SATD.

To understand how different machine learning algorithms
impact the performance of the classifier, we inspect the first
and the last three columns of Table V, as well as the last six
rows of Table VI. From the tables we can see that all the
implementations achieved comparable precisions (from 0.64
to 0.88). Indeed, there is no statistically significant difference
in terms of precision among these implementations. However,
the differences emerge when comparing recall. Using auto-
sklearn achieves a significantly higher recall than classifiers
using other machine learning algorithms (i.e., Naive Bayes,
SVM and KNN).

We also inspected which machine learning algorithm was
adopted by auto-sklearn after automatic classifier selection.
The records show that in 9 of the ten rounds of 10-fold
evaluation Extra Trees was adopted, while the remaining one
adopted Random Forest. That is, these two machine learning
algorithms would potentially be a good choice for identifying
On-hold SATD when automatic selection of the classifier is
not possible.

B. RQ2: How does On-hold SATD evolve in open source
projects?

To answer RQ2, we first looked into the life span of re-
moved issue-referring comments for On-hold SATD and cross-
reference comments separately. The life span distributions can
be found in Fig. 5.

The median life span of On-hold SATD comments is 42
days, while it is 119.5 days for cross-reference comments. That
is, overall, the median life span of cross-reference comments
is almost three times of that of On-hold SATD.

Indeed, while both types of comments contain issue refer-
ences, only On-hold SATD requires maintenance actions from
developers. Cross-reference comments stay much longer as
they are usually used for documentation purposes.

We then investigated how long it takes to address On-hold
SATD comments after the corresponding issues are resolved,
and plotted the duration distribution in Fig. 6.

Onhold Crossreference
1

10

10 2

10 3

10 4

da
ys

42

119.5

Fig. 5: Distribution of life spans of removed issue-referring
comments

1

10

10 2

10 3

10 4

da
ys
 (
lo
g 
sc
al
e)

Fig. 6: Distribution of days needed to address SATD comments
after issues were resolved

Around 53% of On-hold SATD were removed within the
same day when the issue was resolved. However, it takes
longer than one year to remove 13% of On-hold SATD.

Additionally, we observed that some developers did not
wait until the issue was resolved to address On-hold SATD
comments. In fact, from a total of 93 removed On-hold SATD
comments, we found that only 30 of them were removed after
the issues were resolved. The corresponding issues of 9 On-
hold SATD comments are still open or have the resolution
set to “wontfix”. 54 On-hold SATD comments were removed
before the issues were resolved, although these issues have
been resolved in the meantime.

on-hold: 3

 Status:
 Resolution:
 Updated:

Open
Unresolved
1 year ago

... Wait for BUG-111 ...

 Status:
 Resolution:
 Updated:

In process
Unresolved
1 month ago

... Workaround for BUG-112

 Status:
 Resolution:
 Updated:

Open
Unresolved
6 months ago

... check after BUG-113 ...

ready: 2

 Status:
 Resolution:
 Updated:

Closed
Fixed
Yesterday

... once BUG-211 is fixed ...

 Status:
 Resolution:
 Updated:

Closed
Fixed
1 week ago

... temporary fix (BUG-212)

done: 2

 Status:
 Resolution:
 Updated:

Resolved
Fixed
3 weeks ago

... once BUG-311 commit ...

 Status:
 Resolution:
 Updated:

Closed
Fixed
2 days ago

... Wait for BUG-312 ...

List of on-hold SATD in a project

Fig. 7: A mockup of On-hold SATD identification tool

C. RQ3: To what extent can our approach identify “ready-to-
be-removed” On-hold SATD?

To understand how well our approach performs in identi-
fying “ready-to-be-removed” On-hold SATD comments, we
reported six identified cases to developers in three issue
reports, as these six cases correspond to three subsystems
of the Apache Hadoop project (two for Hadoop Common,
one for Hadoop HDFS, and three for Hadoop YARN). By
the time of writing, we have received the feedback from
the developers about the two “ready-to-be-removed” On-hold
SATD comments in the Hadoop Common subsystem.

Table IX lists these two instances of On-hold SATD reported
to the developers in JIRA issue tracking system (link hidden
for double blind review).

TABLE IX: Two “ready-to-be-removed” On-hold SATD com-
ments which received developers’ feedback

Ready On-hold SATD
1 “/* return type will change to AFS once HADOOP-6223 is

completed */”

2 “... This should be made deprecated along with the mapred
package HADOOP-1230. ... ”

For the first case, the return type had already changed to
AFS, and the resolution of the referred issue “HADOOP-6223”

had been set to “resolved”. In the issue report, we suggested
that this On-hold SATD comment should be removed. Devel-
opers agree that it can be removed:

“I think this is correct finding. Would you like to put
a patch for this”

Later on, the patch we submitted got integrated into the
repository.

Regarding the second case, we found that the referred
issue “HADOOP-1230” had also been resolved. Thus, we
suggested that developers could apply corresponding changes
(i.e., making the setJobConf method deprecated). The
developers agreed that the action should be taken but it is a
rather complicated fix, thus recommending a new JIRA issue
thread:

“...we need to update the document in a separate
jira.”

“... Given that is a bigger subject than this fix, we
should discuss on that separately ...”

Overall, the two cases for which we have already received
feedback on indicate the practical value of our approach for
On-hold SATD identification and removal.

D. Replication

To facilitate replication, we released our dataset in our
online appendix, which can be accessed at https://tinyurl.
com/onholdissue. The spreadsheet file of our dataset contains
three sheets: removed comments, remaining comments, and
identified “ready-to-be-removed” On-hold SATD. For all the
comments in our dataset, we include the comment context,
code file path, line number, referred issue, and our annotation
(On-hold SATD or cross-reference). For removed comments,
we also include when the code comment was introduced and
removed. For the “ready-to-be-removed” On-hold SATD, there
are also the status and the resolution of the corresponding
issues.

VI. TOWARDS A ON-HOLD SATD RECOMMENDER

Our findings can serve as guideline for developers writing
reference issues in code comments:

• Developers should check SATD comments referring to
issues which had already been resolved, as we reported
that 13% of comments were removed with a delay of
more than one year.

• When the code comments refer to issues, developers
should clearly mention the intention in the comments,
i.e., whether the issue is used for documentation or to
denote the condition on which one is waiting on.

While we plan on expanding our work to analyze more
projects and to include also other issue tracking systems, we
believe that our work can be synthesized into a recommender
system for On-Hold SATD. In Fig. 7 we depicted a mock-up
of such a recommender.

The tool would report the list of On-hold SATD comments,
ready to be addressed On-hold SATD comments, and removed
On-hold SATD. Each item would include comments, links to
the original comments and to the pertaining issue (including
its status and duration).

VII. THREATS TO VALIDITY

Threats to construct validity concern the relation between
the theory and the observation, and in this work they are
mainly due to the measurements we performed:

• Imprecisions in the identification of issue references in
comments. We used the regular expressions in Table II
to mine issue references in code comments. The regular
expressions have been defined and tested by the first
author, and are customized for each of the issue trackers
used by the subject systems.

• Subjectivity/errors in the manual classification. To mit-
igate this threat, the first two authors independently
classified the 1,530 issue-referencing comments as On-
hold SATD or as cross-reference. Then, the third author
resolved the conflicts.

Threats to external validity concern the generalizability of
results. Rather than going large-scale, we preferred to work
on a set of ten well-known Java open source projects and to
manually validate all issue-referencing comments we found in

them in such a way to increase the reliability of the presented
data. Other systems should be included in the analysis to
allow for a broader generalizability of our conclusions. Also,
the results of RQ3 are based on only two feedback we
received from developers, thus do not allowing any sort of
generalizability but only serving as pointers for qualitative
analysis.

VIII. CONCLUSION

Since the definition of the term “technical debt” by Cun-
ningham three decades ago [1], researchers have investigated
the phenomenon, leading to the understanding that it is its
creeping, barely visible nature that leads to maintenance and
evolvability problems down the road. Developers cannot be
faulted for the introduction of technical debt, as software
industry functions under great time and budget pressure,
and compromises have to be made to meet said time and
budget constraints. Indeed, developers often admit that they are
creating technical debt, which led to the term “self-admitted
technical debt” (SATD) coined by Potdar and Shihab [3].

A particular type of SATD is the one we named “On-hold”
SATD, where a developer has to make a compromise or halt
development because of an external condition. Human nature
dictates that often On-hold SATD is simply forgotten about.

We performed an empirical study to understand whether
On-hold SATD can be automatically detected: We analyzed
ten open source projects, and found that 8% of the comments
referring to issues are On-hold SATD. To identify On-hold
SATD, we developed a classifier using n-gram and auto-
sklearn, resulting in an average precision of 0.79, an average
recall of 0.70, an average F1-score of 0.73, and an average
AUC of 0.97. In short, On-hold SATD can indeed be detected
automatically in a fairly reliable way.

To understand how On-hold SATD evolves, we looked
into life-span of removed issue-referring comments. We found
that the median life-span of On-hold comments is 42 days.
This is certainly beyond the horizon of human short-term
memory, and indeed we found that after the issues were
resolved, 13% of On-hold SATD takes longer than one year
to remove. To evaluate the reliability in identifying On-hold
SATD which should be removed, we collected feedback from
developers from open source projects. Developers agreed with
our findings that the reported On-hold SATD should be fixed
or removed.

The next logical step is thus the design and implementation
of the recommender system we described in Section VI and
aimed at facilitating the identification, understanding, and
resolution of On-hold SATD instances.

ACKNOWLEDGEMENT

We gratefully acknowledge the financial support of Japan
Society for the Promotion of Science for the JSPS KAK-
ENHI Grant No. 16H05857 and 20H05706, and the Swiss
National Science Foundation for the project SENSOR (SNF-
JSPS Project No. 183587).

REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” in
Addendum to the Proceedings on Object-Oriented Programming
Systems, Languages, and Applications (Addendum), ser. OOPSLA ’92.
New York, NY, USA: Association for Computing Machinery, 1992, p.
29–30. [Online]. Available: https://doi.org/10.1145/157709.157715

[2] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” IEEE Software, vol. 29,
no. 6, pp. 22–27, 2012.

[3] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution, ser. ICSME ’14.
USA: IEEE Computer Society, 2014, p. 91–100. [Online]. Available:
https://doi.org/10.1109/ICSME.2014.31

[4] F. Zampetti, A. Serebrenik, and M. Di Penta, “Was self-admitted
technical debt removal a real removal? an in-depth perspective,” in
2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), 2018, pp. 526–536.

[5] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD), 2015, pp. 9–15.

[6] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente, “Beyond the code:
Mining self-admitted technical debt in issue tracker systems,” arXiv
preprint arXiv:2003.09418, 2020.

[7] R. Maipradit, C. Treude, H. Hata, and K. Matsumoto, “Wait
for it: identifying “on-hold”self-admitted technical debt,” Empirical
Software Engineering, 2020. [Online]. Available: https://doi.org/10.
1007/s10664-020-09854-3

[8] M.-A. Storey, J. Ryall, R. I. Bull, D. Myers, and J. Singer, “Todo or
to bug: Exploring how task annotations play a role in the work prac-
tices of software developers,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08, 2008, pp. 251–260.

[9] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. da Silva,
A. Santos, and C. Siebra, “Tracking technical debt - an exploratory case
study,” in Software Maintenance (ICSM), 2011 27th IEEE International
Conference on, 2011, pp. 528–531.

[10] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise
perspective on technical debt,” in Proceedings of the 2Nd Workshop
on Managing Technical Debt, ser. MTD ’11, 2011, pp. 35–38.

[11] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software
practitioners have to say about technical debt,” Software, IEEE, vol. 29,
no. 6, pp. 22–27, 2012.

[12] P. Kruchten, R. L. Nord, I. Ozkaya, and D. Falessi, “Technical debt:
Towards a crisper definition report on the 4th international workshop on
managing technical debt,” SIGSOFT Softw. Eng. Notes, vol. 38, no. 5,
pp. 51–54, 2013.

[13] R. Spinola, N. Zazworka, A. Vetró, C. Seaman, and F. Shull, “Inves-
tigating technical debt folklore: Shedding some light on technical debt
opinion,” in Managing Technical Debt (MTD), 2013 4th International
Workshop on, 2013.

[14] K. S. Rubin, Essential Scrum: A Practical Guide to the Most Popular
Agile Process, 1st ed. Addison-Wesley Professional, 2012.

[15] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, no. 6, pp. 18–21, 2012.

[16] N. Alves, L. Ribeiro, V. Caires, T. Mendes, and R. Spinola, “Towards
an ontology of terms on technical debt,” in Managing Technical Debt
(MTD), 2014 Sixth International Workshop on, 2014, pp. 1–7.

[17] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in Proceedings of the 13th International Conference on
Mining Software Repositories, MSR 2016, Austin, TX, USA, May 14-22,
2016, 2016, pp. 315–326.

[18] N. Zazworka, R. O. Spı́nola, A. Vetro’, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proceedings
of the 17th International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE ’13, 2013, pp. 42–47.

[19] E. da S. Maldonado and E. Shihab, “Detecting and quantifying differ-
ent types of self-admitted technical debt,” in 7th IEEE International

[20] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of self-
admitted technical debt on software quality,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, 2016, pp. 179–188.

Workshop on Managing Technical Debt, MTD 2015, Bremen, Germany,
October 2, 2015, 2015, pp. 9–15.

[21] G. Sierra, E. Shihab, and Y. Kamei, “A survey of self-admitted
technical debt,” Journal of Systems and Software, vol. 152, pp. 70
– 82, 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121219300457

[22] M. A. d. F. Farias, M. G. d. M. Neto, A. B. d. Silva, and R. O.
Spı́nola, “A contextualized vocabulary model for identifying technical
debt on code comments,” in 2015 IEEE 7th International Workshop on
Managing Technical Debt (MTD), 2015, pp. 25–32.

[23] E. d. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural language
processing to automatically detect self-admitted technical debt,” IEEE
Transactions on Software Engineering, vol. 43, no. 11, pp. 1044–1062,
2017.

[24] S. Wattanakriengkrai, R. Maipradit, H. Hata, M. Choetkiertikul,
T. Sunetnanta, and K. Matsumoto, “Identifying design and requirement
self-admitted technical debt using n-gram idf,” in 2018 9th International
Workshop on Empirical Software Engineering in Practice (IWESEP),
2018, pp. 7–12.

[25] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying
self-admitted technical debt in open source projects using text mining,”
Empirical Software Engineering, vol. 23, no. 1, pp. 418–451, 2018.
[Online]. Available: https://doi.org/10.1007/s10664-017-9522-4

[26] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd detector: A
text-mining-based self-admitted technical debt detection tool,” in 2018
IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), 2018, pp. 9–12.

[27] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy,
“Neural network-based detection of self-admitted technical debt:
From performance to explainability,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 3, Jul. 2019. [Online]. Available: https:
//doi.org/10.1145/3324916

[28] F. Zampetti, C. Noiseux, G. Antoniol, F. Khomh, and M. Di Penta,
“Recommending when design technical debt should be self-admitted,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2017, pp. 216–226.

[29] M. Yan, X. Xia, E. Shihab, D. Lo, J. Yin, and X. Yang, “Automating
change-level self-admitted technical debt determination,” IEEE Trans-
actions on Software Engineering, vol. 45, no. 12, pp. 1211–1229, 2019.

[30] D. A. Wheeler, “Sloccount user’s guide,” 2004.
[31] M. Honnibal and I. Montani, “spacy - industrial-strength natural lan-

guage processing in python,” https://spacy.io/, 2017, (Accessed on
13/04/2019).

[32] D. Jurafsky and J. H. Martin, “Speech and language processing,” 2009.
[33] M. Shirakawa, T. Hara, and S. Nishio, “Idf for word n-grams,”

ACM Trans. Inf. Syst., vol. 36, no. 1, Jun. 2017. [Online]. Available:
https://doi.org/10.1145/3052775

[34] ——, “N-gram idf: A global term weighting scheme based on
information distance,” in Proceedings of the 24th International
Conference on World Wide Web, ser. WWW ’15. Republic
and Canton of Geneva, CHE: International World Wide Web
Conferences Steering Committee, 2015, p. 960–970. [Online]. Available:
https://doi.org/10.1145/2736277.2741628

[35] M. Shirakawa, “N-gram weighting scheme,” Jul 2017. [Online].
Available: https://github.com/iwnsew/ngweight

[36] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg,
M. Blum, and F. Hutter, “Efficient and robust automated
machine learning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 2962–2970. [Online]. Available: http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[37] W. J. Conover, Practical nonparametric statistics, 3rd ed. Wiley New
York, 1998.

[38] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian journal of statistics, pp. 65–70, 1979.

[39] R. J. Grissom and J. J. Kim, “Effect sizes for research: A broad practical
approach,” Mahwah, NJ: Earlbaum, 2005.

