
Understanding Self-Admitted Technical Debt in Test Code: An
Empirical Study
IBUKI NAKAMURA, Nara Institute of Science and Technology, Japan

YUTARO KASHIWA, Nara Institute of Science and Technology, Japan

BIN LIN, Hangzhou Dianzi University, China

HAJIMU IIDA, Nara Institute of Science and Technology, Japan

Developers often opt for easier but non-optimal implementation to meet deadlines or create rapid prototypes,

leading to additional effort known as technical debt to improve the code later. Oftentimes, developers explicitly

document the technical debt in code comments, referred to as Self-Admitted Technical Debt (SATD). Numerous

researchers have investigated the impact of SATD on different aspects of software quality and development

processes. However, most of these studies focus on SATD in production code, often overlooking SATD in the

test code or assuming that it shares similar characteristics with SATD in production code. In fact, a significant

amount of SATD is also present in the test code, with many instances not fitting into existing categories for the

production code. This study aims to fill this gap and disclose the nature of SATD in the test code by examining

its distribution and types. Moreover, the relation between its presence and test quality is also analyzed.

Our empirical study, involving 17,766 SATD comments (14,987 from production code, 2,779 from test code)

collected from 50 repositories, demonstrates that while SATD widely exists in test code, it is not directly

associated with test smells. Our study also presents comprehensive categories of SATD types in the test code,

and machine learning models are developed to automatically classify SATD comments based on their types for

easier management. Our results show that the CodeBERT-based model outperforms other machine learning

models in terms of recall and F1-score. However, the performance varies on different types of SATD.

CCS Concepts: • Software and its engineering → Software design techniques; Documentation; Software
evolution;Maintaining software; Empirical software validation; Software reliability.

Additional Key Words and Phrases: Self-Admitted Technical Debt, Test Code, Software Quality

ACM Reference Format:
Ibuki Nakamura, Yutaro Kashiwa, Bin Lin, and Hajimu Iida. 2025. Understanding Self-Admitted Technical

Debt in Test Code: An Empirical Study. ACM Trans. Softw. Eng. Methodol. 1, 1 (January 2025), 36 pages.

https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Developers often opt for a simpler, albeit non-optimal, implementation over an ideal but time-

consuming one due to various reasons such as meeting deadlines or creating rapid prototypes.

These implementation choices may introduce additional efforts for future improvement, known as

technical debt [16]. While technical debt can accelerate development in the short term, it becomes a

Authors’ Contact Information: Ibuki Nakamura, nakamura.ibuki.nh4@naist.ac.jp, Nara Institute of Science and Technology,

Ikoma, Japan; Yutaro Kashiwa, Nara Institute of Science and Technology, Ikoma, Japan, yutaro.kashiwa@is.naist.jp; Bin Lin,

Hangzhou Dianzi University, Hangzhou, China, b.lin@hdu.edu.cn; Hajimu Iida, Nara Institute of Science and Technology,

Ikoma, Japan, iida@itc.naist.jp.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1557-7392/2025/1-ART

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

HTTPS://ORCID.ORG/0009-0001-0671-7454
HTTPS://ORCID.ORG/0000-0002-9633-7577
HTTPS://ORCID.ORG/0000-0001-6307-8460
HTTPS://ORCID.ORG/0000-0002-2919-6620
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0009-0001-0671-7454
https://orcid.org/0000-0002-9633-7577
https://orcid.org/0000-0001-6307-8460
https://orcid.org/0000-0002-2919-6620
https://doi.org/XXXXXXX.XXXXXXX

2 Nakamura et al.

long-term obstacle, degrading software quality and impeding project progress [39, 77]. As technical

debt accumulates, maintenance costs also increase, making it challenging to repay the debt [48, 50].

In practice, developers frequently use keywords like TODO: or FIXME: in code comments to

highlight issues or tasks that need to be addressed. This specific type of technical debt, intentionally

introduced by developers, is known as Self-Admitted Technical Debt (SATD) [53]. SATD provides

opportunities for researchers and developers to identify technical debt and understand how it

is handled in software projects. Given the impact of technical debt on the development process

and product quality, researchers have done extensive work to analyze their usage in source code.

Vassallo et al. [73] found that 88% of developers working on financial systems have introduced

SATD. In recent years, it has been reported that SATD impacts software quality [63]. Wehaibi et
al. [74] compared files with and without SATD, showing that files with SATD tend to have more

defects. Both Wehaibi et al. [74] and Kamei et al. [35] observed that changes related to SATD are

more complex than non-SATD changes. Additionally, some studies have manually inspected and

classified SATD to demystify it [7, 20]. Farias et al. [20] created nine categories of SATD based

on technical debt definitions established by the previous studies [1, 2] and detected SATD using

a pattern-based approach. Furthermore, Bavota et al. [7] conducted a large empirical study and

classified SATD into six categories. Based on these categories, Sala et al. [58] developed DebtHunter,
an ML-based tool to categorize SATD types, further facilitating SATD studies.

1

However, these studies often overlook or are less eager to investigate SATD in test code. This

oversight hinders test-specific issues highlighted by SATDs. For example, a comment such as,

“TODO: This test only covers the happy path - need to add edge cases for null inputs,” reveals

that while the test may pass, it provides incomplete coverage and a false sense of security, leaving

the system vulnerable. Furthermore, this gap is evident in the literature; for instance, Bavota et
al.’s categories [7] primarily use SATD from production code, resulting in no subcategories in

their “Test” category, while other categories have many subcategories. Sala et al.’s tool [58] also
automatically excludes test code when detecting SATD.

Despite this oversight in SATD research, issues in test code have garnered attention from many

researchers. For example, van Deursen et al. [71] introduced the concept of test smells, which

represent issues in test code. These test smells indicate inadequate design or implementation,

leading to maintenance difficulties and an increased defect injection rate. Additionally, Li et al. [42]
conducted a literature review and analyzed previous studies on technical debt (non-self-admitted)

and its management. Their results present several subcategories of test-related technical debt.

However, the types of listed test-related technical debt are rather limited, and it remains unclear

whether the types of SATD would be different compared to general technical debt in the test code.

Studying SATD in test code can help us gain comprehensive insight on how developers document

test code issues. Identifying the types of SATDs in test code can help developers better manage the

SATD. In this study, we aim to analyze the prevalence and types of SATD in test code and classify

their types. The main contributions of our study are as follows.

• We demonstrated the prevalence of SATD in test code and compared it to that in production

code. Our result indicates that much fewer instances of SATD reside in the test code, but they

are not negligible and still play an important role.

• We examined the relationship between Test SATDs and software quality at the method level.

The results reveal that test methods with SATD tend to be more lengthy and prone to code

smells. However, no relationship can be found between Test SATD and test smells, implying

that these issues occur independently.

1
https://github.com/PandaMinore/DebtHunter-Tool

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/PandaMinore/DebtHunter-Tool

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 3

• We conducted a manual classification of 506 randomly selected Test SATD instances and

identified 20 types of issues, which could be further categorized into 5 main groups. The

most common category was “Indicates incomplete or unimplemented tests”, highlighting the

lack of proper tests in general.

• We built a CodeBERT-based model to automatically classify the types of Test SATD, which

outperforms other machine learning models in terms of recall and F1-score, reaching 0.69

and 0.70, respectively. However, the performance varies on different types of SATD.

Replication Package: To facilitate replication and further studies, we provide the data and

scripts used in our replication package on GitHub.
2

Structure of this paper: Section 2 introduces related work. Section 3 presents motivating

examples and the research questions we aim to address. Section 4 describes the methodology

adopted to answer the research questions. Section 5 presents the empirical results for each research

question. Section 6 summarizes our findings, lessons learned, and describes the implications. Section

7 discusses the threats to validity and Section 8 concludes this paper.

2 Related work
In this section, we present related work on self-admitted technical debt, test code issues, and their

intersections.

2.1 Self-admitted Technical Debt
Potdar and Shihab [53] investigated technical debt explicitly documented as comments in the

source code by developers, known as Self-Admitted Technical Debt (SATD). SATD comments often

describe issues or incomplete tasks [18], such as “TODO: - This method is too complex, lets break it
up”3 in the “ArgoUml” project and “TODO no methods yet for getClassname”4 in the project “Apache

Ant”. To understand the role SATD plays in software projects, numerous studies have proposed

approaches to identify SATD in software and analyzed its relations with software quality.

2.1.1 SATD Identification. Various approaches have been proposed to detect SATD in code com-

ments, which are based on either pattern-matching or machine learning.

As one of the earliest approaches, Potdar and Shihab [53] extracted comments from source

code using srcML [14] and identified 62 recurring patterns representing SATD. These patterns are

further used to match code comments to detect SATD. Maldonado et al. [17] extended this work

and developed filtering heuristics to remove the comments which are less likely to contain SATD,

such as license comments and commented source code. They also manually classified SATDs into

five types. Farias et al. [19] proposed a Contextualized Vocabulary Model to detect SATD, which

systematically takes into account how terms may be combined to identify different types of debt.

Guo et al. [30] proposed MAT (Matches Task Annotation Tags), an approach for detecting SATD

based on tags such as TODO and FIXME.
Machine learning has also been adopted to detect SATD in recent years. For example, Maldonado

et al. [18] proposed an NLP-based method, which trains a maximum entropy classifier with a

classified dataset to automatically detect SATDs related to design and requirements. Liu et al. [43]
developed SATD Detector, which is based on a composite classifier of several sub-classifiers using

Naive Bayes Multinomial (NBM). Their tool provides an environment for developers to manage

SATD comments through an Eclipse plug-in. Ren et al. [56] proposed a method to detect SATD

2
https://github.com/ibu00024/UnderstandingSelfAdmittedTechnicalDebtinTestCode

3
https://github.com/argouml-tigris-org/argouml/blob/VERSION_0_34/src/argouml-app/src/org/argouml/notation/provi

ders/uml/AbstractMessageNotationUml.java#L448

4
https://github.com/apache/ant/blob/rel/1.7.0/src/main/org/apache/tools/ant/util/ClasspathUtils.java#L496

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/ibu00024/UnderstandingSelfAdmittedTechnicalDebtinTestCode
https://github.com/argouml-tigris-org/argouml/blob/VERSION_0_34/src/argouml-app/src/org/argouml/notation/providers/uml/AbstractMessageNotationUml.java#L448
https://github.com/argouml-tigris-org/argouml/blob/VERSION_0_34/src/argouml-app/src/org/argouml/notation/providers/uml/AbstractMessageNotationUml.java#L448
https://github.com/apache/ant/blob/rel/1.7.0/src/main/org/apache/tools/ant/util/ClasspathUtils.java#L496

4 Nakamura et al.

using convolutional neural networks (CNN). Sala et al. [58] developed “DebtHunter,” a tool that

first identifies SATD and then classifies SATD into specific debt types. Both classifiers used in these

two steps are built on Sequential Minimal Optimization (SMO).

2.1.2 Prevalence of technical debt. Potdar and Shihab [53] analyzed the quantity and reasons for

introducing SATD in four large-scale open-source software repositories. They found that SATD

was present in 2.4% to 31% of the files in the projects, with only 26.3% to 63.5% of the issues being

resolved after introduction. They also discovered that SATD is often introduced by experienced

developers and tends to be added regardless of the release timing. Maldonado and Shihab [17]

investigated SATD in five open-source software repositories and classified SATD into five categories

as indicated by Alves et al. [3]. Among these types, Design Debt, which indicates problems that

violate design principles, accounts for the largest proportion of cases (ranging from 42% to 84%),

followed by Requirement Debt, which indicates problems related to requirements (ranging from 5%

to 45%). Also, Vassallo et al. [73] conducted a survey on testing activities and the management of

technical debt in financial systems. They found that many developers documented technical debt

in a self-reported manner, with 88% of developers implementing SATD.

2.1.3 Relation between SATD and software quality. Wehaibi et al. [74] compared the number

of defects in files with and without SATDs in five OSS projects and found no clear difference.

However, they observed that the number of defects tended to increase after SATDs were introduced.

Additionally, while future defects were less likely to occur after changes involving SATD, these

changes were usually more complex than changes to files without SATD. Based on this finding,

they concluded that the existence of SATD makes system changes more difficult. Kamei et al. [35]
investigated the complexity and dependency of code changed during the introduction and removal

of SATD to measure the amount of “interest” it accumulated. Based on the Apache JMeter project,

they found that 42% to 44% of the code incurred positive interest, meaning it would cost more to

remove in the future. Conversely, 8% to 13% incurred negative interest, and 42% to 49% did not

incur interest.

Palomba et al. [51] studied the relationship between SATD and refactoring in three OSS projects.

They found that approximately 46% of refactored classes had SATD in previous versions. Further-

more, in 67% of cases, comments and descriptions related to SATD were deleted by refactoring,

resolving the technical debt. This study shows that SATD might play an important role as a

motivation for refactoring. Maldonado et al. [18] analyzed the relationship between SATD and

code smells. Code smells indicate potential flaws in the design or implementation of production

code [26], which are likely to cause problems in the future. The authors analyzed the overlap

between SATD and three representative types of code smells: Long Method, God Class, and Feature

Envy at the file level. Their investigation, which targeted 10 OSS repositories, revealed that 65% of

files containing SATD also had Long Methods, 44.2% contained God Classes, and 20.7% contained

Feature Envy classes. Moreover, when considering all code smells, they found that an average of

69.7% of files containing SATD had at least one code smell. From these findings, they concluded

that while there are certain overlaps between SATD and code smells, these two indicators can serve

as complementary approaches for detecting technical debt.

Rantala et al. [54] investigated the relationship between keyword-labeled self-admitted technical

debt (KL-SATD) [55], such as “TODO” or “FIXME”, and issues identified by static code analysis using

SonarQube. Their results indicate that KL-SATD is associated with reduced code maintainability as

measured by SonarQube. The introduction and removal of KL-SATD are mainly related to code

smells rather than vulnerabilities or bugs. However, there is a limited overlap between KL-SATD

and SonarQube issues, with only 36% of KL-SATD comments being in the context of a SonarQube

issue, and only 15% directly addressing an issue.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 5

These studies do not distinguish whether the SATD is present in the production code or the test

code.

2.2 Issues in Test code
Van Deursen et al. [71] coined the concept of test smells, representing potential problems in test

code, which are often used to investigate their impact on software quality and maintainability

[27]. Bavota et al. [6] investigated the prevalence of test smells in test code and their effect on

software understanding and maintenance. They found that 86% of the test cases for 27 software

systems contained at least one test smell, and the presence of test smells reduced the efficiency of

program comprehension. Tufano et al. [70] conducted an empirical study involving 152 projects to

investigate the nature of test smells. Their results revealed that test smells tend to persist in the

system for a long time, with 80% not being fixed even after 1,000 days. Spadini et al. [65] studied
the impact of test smells on the quality of test code. Their analysis of 10 OSS projects revealed that

tests with test smells are 47% more likely to be modified and 81% more likely to have defects than

code without test smells.

These aforementioned studies have been conducted to clarify test-code-related issues that are

not admitted by developers. These studies explore different types of test issues. Studying SATD

in test code could provide new insights into what issues developers face in test code and help to

identify new types of test smells and (non-self-admitted) technical debt.

2.3 Testing-Related SATD
Gat and Heintz [28] investigated the impact of technical debt on software development processes

and proposed methods for its reduction. They found that the lack of automated testing is a major

factor causing delays in development speed and recommended enhancing unit testing and utilizing

“Test as a Service.” Codabux and Williams [13] also examined the challenges and best practices in

managing technical debt. They identified “Automation debt,” caused by a lack of test automation,

and “Test debt,” arising from unexecuted tests.

Li et al. [42] conducted a literature survey on technical debt published between 1992 and 2013.

They categorized technical debt into ten different categories, identifying one relevant to testing,

known as Test Technical Debt, which is the third most well-studied category. The test category

includes seven subcategories: “Low code coverage,” “Deferring testing,” “Lack of tests,” “Lack of test

automation,” “Residual defects not found in tests,” “Expensive tests,” and “Estimation errors in test

effort planning.”

These identified test-related SATD types are either over coarse-grained or not extracted in a

systematic manner (i.e., by aggregating multiple independent studies).

3 ResearchQuestions
3.1 Motivating Examples
Bavota et al. [7] conducted an empirical study on SATD using 159 repositories from Eclipse and

Apache projects. They manually classified 366 SATDs into six categories: Code, Design, Document,

Defect, Test, and Requirement. Code debt accounted for the largest proportion (30%), followed

by Defect debt and Requirement debt, each accounting for 20%. Design, Document, and Test

debt accounted for 12%, 10%, and 8%, respectively. More importantly, most of the categories have

subcategories except Test debt. For example, Code debt has two subcategories: “low internal quality”

indicating poor code quality, and “workaround” referring to compromised code due to temporary

implementations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

6 Nakamura et al.

In software projects, we have noticed that SATD comments in the test code do have different

intentions:

• Test failures
// TODO: Passes on macOS, fails on Linux and Windows with AccessDeniedException.

• Need for specific tests
// TODO : more tests for datetimes with timezones and/or offsets

• Special implementation for testing purposes
// TODO: This is a hack, wc.login does not work with the form

Some studies have also observed a very small number of instances relevant to testing when they

studied SATD mainly in production code. Farias et al. [20] proposed a pattern-based method for

detecting SATD and conducted an empirical evaluation on three repositories: JEdit, Lucene, and

ArgoUML. During the evaluation, they observed three types of Test debt: “deficiencies in testing

activities” indicating defects in testing, “tests to do” indicating tests that should be conducted,

and “insufficient code coverage” indicating low test coverage. However, these subcategories were

derived from a small number of samples (i.e., only 9 instances). Kashiwa et al. [36] also reported
test-related SATD when investigating the impact of SATD in modern code reviews. They randomly

sampled 375 SATD comments from OpenStack and Qt projects and classified them into six types:

Scheduling, Work Dependency, Communication, Problem Report, Workaround, and Test. They

observed 10 instances in the Test category and identified two subcategories: Necessity and Failure.

The former refers to the cases where sufficient tests are missing for the method, while the latter

indicates that tests fail at the location containing the SATD. Azuma et al. [5] investigated SATD

in Docker using Dockerfiles collected from the top 1250 images on Docker Hub. They manually

classified 382 comments and found 50 SATD instances, which were further categorized into five

types: Code Debt, Test Debt, Defect Debt, Design Debt, and Process Debt. Two subcategories were

identified for Test debt: “integrity check” (lack of an integrity check on binary files or hash values

used in a container) and “improvement for test” (asking for improvements in testing methods).

According to their study, while there were only 9 cases of SATD related to testing, Test Debt was

the second most common type of SATD after Code Debt, which had the most cases (26).

While researchers have created several subcategories for test debt, they are normally derived

from a small size of samples. Moreover, they are mainly a side product when studying SATD in

whole software projects with no specific attention to testing. In this study, we collected 2,779 SATD

instances present in the test code from 50 repositories to reveal the prevalence of Test SATD. We

also manually classified 506 samples to disclose the intentions behind Test SATD. Studying SATD

in test code can help us understand what test-related issues developers recognize and how they are

handled. Moreover, we might identify new test smells with Test SATD.

3.2 Proposed ResearchQuestions
In this study, we aim to answer the following four research questions (RQs). Note that this study

refers to SATD in production code as Production SATD and SATD in test code as Test SATD.

𝑅𝑄1: How prevalent is SATD in test code?

A previous study by Bavota et al. [7] has claimed that test-related SATD is the least frequent

one by manually inspecting 366 SATD instances. However, the SATD instances were collected

from only two ecosystems (Apache and Eclipse), which hinders the generalizability of the finding.

Additionally, the original study was conducted in 2016, and there are currently more advanced

SATD detection tools available, which might lead to different results. As the first step of this study,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 7

Repository list Repository

Checkout

Identify prod. 
and test code  

directories, using 
build filesClone

Code and build files

Prod. code

Test code

DebtHunter

DesigniteJava 
& JavaParser

pom

Smell

Software Quality

SATD
Test SATD

SATD
Prod. SATD

Inspectors

Classify
Type A

RQ3: Types

Train

RQ4: Automatic 
Classification

RQ2: Correlation

DebtHunter

RQ1: Prevalence

Fig. 1. Overview of the data analysis

we aim to replicate the study of Bavota et al. to reveal the prevalence of SATD in test code, collected

from a much more diverse repositories.

𝑅𝑄2: Is SATD in test code correlated with test quality?
Previous research on SATD has investigated the relationship between SATD and various software

quality indicators, such as complexity metrics [53], coupling and readability [7], code smells [18, 54].

These studies suggest that SATD is not directly correlated with many aspects of code quality,

although there is certain correlation between SATD and code smells. It is worth noting that these

studies mainly target SATD in production code, and there are currently no studies examining the

relationship between Test SATD and test quality. In RQ2, we aim to fill this gap.

𝑅𝑄3: What are the purposes of SATD in test code?
Existing studies [7, 36] have identified several test-related SATD. However, they are either too

coarse-grained or derived from a small size of samples. To get a comprehensive picture of what

types of SATD exist in the test code, in RQ3, we aim to identify the Test SATD types in a systematic

manner by manually analyzing Test SATD instances and categorizing them based on the intentions

of developers.

𝑅𝑄4: To what extent can SATD in Test Code be classified automatically?
Various approaches [12, 18, 58] have been proposed for detecting and classifying SATD. However,

these tools mainly focus on production code and no tool has been developed to categorize SATD in

test code. In RQ4, we aim to fill this gap and develop a classifier to categorize Test SATD based on

the categories defined in 𝑅𝑄3: What are the purposes of SATD in test code?. We believe that the

new model could streamline future analysis of Test SATD.

4 Methodology
This section describes the data collection and analysis process in this study.

4.1 Data Collection
Figure 1 shows the overview of our data collection process. To collect SATD instances from diverse

software repositories, we select 50 projects: 20 projects from previous SATD studies [18, 30] and 30

projects from testing-related studies [9, 37, 47, 64]. This is in line with our goal to study Test SATD

as previous SATD studies mainly focus on production code. Table 1 summarizes the repositories

used in this study.

For each of these repositories, we clone and checkout the latest revision of the master/main

branch. However, for some repositories, we collected specific snapshot versions instead. We then

identify SATD in the production code and the test code. Since all 50 repositories in our study

are Java projects using either Maven or Gradle, we identified production and test directories by

analyzing their build configuration files. We located each repository’s pom.xml file (Maven projects)

or build.gradle file (Gradle projects) and parsed it to extract directory paths. For Maven projects,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

8 Nakamura et al.

Table 1. Statistics of the studied repositories

Repository P.LOC T.LOC Files SATDs Stars Commits Forks Dev. Ref

1 Ant 114,501 32,279 1,327 243 442 14,963 445 80 [18]

2 ArgoUML 160,769 16,705 1,908 1,828 262 17,797 102 5 [18]

3 Columba 66,394 1,526 993 138 - - - - [18]

4 EMF 606,645 105,084 3,140 141 20 10,341 24 36 [18]

5 Hibernate 163,448 166,085 4,705 812 - - - - [18]

6 Jedit 121,532 3,502 617 164 - - - - [18]

7 JFreeChart 97,460 41,664 1,017 93 1,307 3,894 565 30 [18]

8 Jmeter 120,620 28,143 1,402 272 8,921 18,254 2,193 80 [18]

9 Jruby 265,506 10,427 1,793 1,016 3,835 53,597 928 362 [18]

10 Squirrel 186,681 28,553 2,325 253 75 7,766 19 20 [18]

11 Dubbo 154,678 108,908 3,581 168 41,184 7,535 26,527 401 [30]

12 Gradle 494,771 17,712 10,392 698 17,886 114,478 4,984 345 [30]

13 Groovy 191,447 12,262 1,793 462 5,336 20,871 1,911 359 [30]

14 Hive 867,928 178,970 5,086 1,354 5,747 10,189 4,757 257 [30]

15 Maven 55,245 19,455 1,012 173 4,716 10,966 2,764 209 [30]

16 Poi 281,995 142,878 3,710 818 2,062 12,828 792 17 [30]

17 Spring Framework 383,270 391,933 8,310 283 58,540 29,550 38,600 355 [30]

18 Storm 249,986 40,390 2,145 103 6,644 10,798 4,064 281 [30]

19 Tomcat 268,488 92,832 2,616 814 7,891 25,797 5,211 133 [30]

20 Zookeeper 61,382 59,789 925 109 12,549 2,534 7,295 238 [30]

21 Commons IO 17,890 33,866 513 87 1,036 4,849 695 115 [37]

22 Spring 2,079 4,240 123 5 2,886 2,165 2,628 49 [37]

23 Joda-Beans 17,353 34,625 328 2 146 891 40 11 [37]

24 Jsoup 15,306 14,745 153 58 11,222 1,969 2,248 103 [37]

25 Spark 6,222 5,048 184 5 9,660 1,041 1,569 123 [37]

26 LittleProxy 4,180 4,665 88 3 2,095 998 782 27 [37]

27 RxJava JDBC 4,611 3,340 79 7 803 926 115 13 [37]

28 Spoon 83,543 83,893 2,407 148 1,840 4,651 361 134 [37]

29 Accumulo 441,912 44,357 2,179 110 1,104 9,001 463 158 [47]

30 BookKeeper 157,229 121,242 2,351 62 1,955 3,322 960 204 [47]

31 Camel 1,041,075 653,891 21,464 1,999 5,906 70,277 5,048 331 [47]

32 Cassandra 314,778 273,241 3,749 496 9,292 28,567 3,723 272 [47]

33 CXF 389,365 308,696 7,513 443 885 18,004 1,442 238 [47]

34 Flink 838,513 748,068 13,521 696 25,086 34,899 13,717 285 [47]

35 Hadoop 997,669 902,657 11,871 1,022 15,190 27,121 9,076 303 [47]

36 Kafka 271,653 356,138 4,245 327 30,571 11,728 14,524 347 [47]

37 Karaf 105,567 23,311 1,603 135 691 9,471 664 163 [47]

38 Wicket 142,446 77,054 3,306 141 768 21,683 393 116 [47]

39 Struts 123,978 87,049 2,589 179 1,318 7,160 824 77 [9]

40 Compress 43,544 29,119 623 170 370 5,121 295 95 [9]

41 Jenkins 113,619 75,714 1,782 509 24,213 34,958 9,093 296 [9]

42 Spring Security 103,939 167,283 3,145 64 9,224 15,713 6,092 388 [9]

43 FileUpload 2,221 4,205 92 13 248 1,657 187 49 [9]

44 Imaging 30,710 11,347 623 73 461 2,486 197 45 [9]

45 Sling 7,246 5,750 179 8 15 687 22 21 [9]

46 UAA 62,053 124,466 1,646 24 1,625 10,952 834 158 [9]

47 Jackson 6,283 10,702 195 9 600 1,560 230 41 [9]

48 Prime JWT 3,759 2,809 101 4 187 326 43 12 [9]

49 OpenRefine 57,094 28,418 1,026 213 11,446 7,995 2,080 353 [9]

50 Quarkus 540,637 449,513 16,729 812 14,764 45,217 2,900 391 [64]

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 9

Production Code Test Code

0

200,000

400,000

600,000

800,000

1,000,000

LO
C

Fig. 2. Distributions of LOC in the production and test Code

we extracted paths from the sourceDirectory and testSourceDirectory elements; for Gradle

projects, we identified paths from the main and test properties. When these paths were not

explicitly defined, we used standard Java conventions: src/main/java for production code and

src/test/java for test code.5,6 In the end, we identify 100,364 files in the production directories

and 60,515 files in the test directories. From these files, we identify SATDs in the production code

and test code. We consider SATD instances found in the production code as Production SATDs and
those found in the test code as Test SATDs. For SATD detection, we employ a state-of-the-art SATD

detection tool, DebtHunter [58]. DebtHunter is an ML-based tool that uses the Sequential Minimal

Optimization (SMO) algorithm [10]. A previous study [58] has demonstrated the high performance

of DebtHunter, with a precision of 0.972, recall of 0.967, and F1-score of 0.965, outperforming other

SATD detection tools. Additionally, since DebtHunter has been trained with multiple labels for

classifying the types of SATD, we also use this tool to identify SATD types. Note that we modified

the source code of DebtHunter so that it can detect Test SATD because the original version excludes

the test code.

4.2 Data Analysis
4.2.1 RQ1 (Prevalence of Test SATD). To understand how prevalent SATD is in the test code,

we count the number of Test SATD and compare it with that of Production SATD. In software

projects, the size (i.e., lines of code) of the production code and test code differ significantly. Figure

2 shows the distribution of LOC of the production code and test code. The median numbers of

LOC in the production code and test code are 121,076 and 37,507.5, respectively. To ensure a fair

comparison, we measure the number of SATD instances per 10,000 lines of code. Finally, we apply

the Wilcoxon signed-rank test [75], which is a non-parametric test to compare paired data and

confirm a statistically significant difference (𝛼 < 0.01). We also measure the effect size using Cliff’s

Delta (𝑑) [29]. We follow the well-established guideline [29] to interpret the effect size: negligible

for |𝑑 | < 0.10, small for 0.10 ≤ |𝑑 | < 0.33, medium for 0.33 ≤ |𝑑 | < 0.474, and large for |𝑑 | ≥ 0.474.

5
https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

6
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_project_layout

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://docs.gradle.org/current/userguide/java_plugin.html#sec:java_project_layout

10 Nakamura et al.

4.2.2 RQ2 (Relationship with Test Quality) . To understand how Test SATD is correlated with the

test quality, we use several proxies to represent the test quality, including general code quality

metrics (code smells, lines of code (LOC), complexity, and readability) and test-specific metrics (test

smells, assertions, and annotations) at the method level. The LOC, the number of assertions, and

annotations are counted after parsing the source code with JavaParser.7

The test smells are detected with tsDetect [52],
8
a state-of-the-art tool which can detect 16 of

19 test smells proposed by van Deursen et al. [71] at the method level. Their evaluation shows an

average precision and recall exceeding 95% for detecting each type of smell. To detect code smells,

we use Designite Java,9 which can detect 10 of 11 code smells proposed by Sharma et al. [61].
To ensure the reliability of these automated detectors on our specific dataset, we conducted an

experimental manual validation. We randomly sampled 100 instances identified as test smells by

tsDetect and 100 instances identified as code smells by Designite Java. Two of the authors then
independently inspected each instance to verify if it was a true positive. Any disagreements were

resolved through discussion with a third inspector to reach a consensus. Our validation confirmed

a high precision for both tools: 90% for the test smell detection and 94% for the code smell detection.

These results to a high extent guarantee the validity of the quality metrics used in our analysis.

We also use Designite Java to calculate the cyclomatic complexity of each method, which

is represented as an integer with a minimum value of 1, where a higher value indicates greater

complexity. For readability, we use the tool proposed by Scalabrino et al. [59]. This tool utilizes
a comprehensive model that integrates textual features, such as identifiers and comments, with

structural code features. The readability score is evaluated on a scale from 0 to 1, where a higher

value indicates better readability. Note that code comments increase the readability score, and SATD

comments may increase the score as well. To examine whether SATDs are included in the methods

with low readability independent of SATD comment influence, we removed SATD comments in

the test methods before applying the tool.

Next, these data are matched with the same method to investigate the relationship between

various software qualities and Test SATD. For test smells and code smells, Chi-square test [67] is

conducted to examine the relationship between the presence or absence of each smell. The null

hypothesis is set as “The presence or absence of Test SATD and the presence or absence of each

smell are independent,” and tested at the significance level of 𝛼 = 0.05. The presence or absence of

Test SATDwas determined at the method level, based on whether SATD exists in the documentation

comments written for the method or in the comments contained within the method. Furthermore,

to investigate whether there is a difference in the number of each smell based on the presence or

absence of Test SATD, a non-parametric test, the Mann-Whitney U test [46], is used to calculate

the p-value. The null hypothesis is “There is no difference in the number of smells based on the

presence or absence of Test SATD,” and the test is conducted with a significance level of 𝛼 = 0.05.

In addition, we used the U-score obtained during the computation of the Mann-Whitney U test to

obtain a Z-score and calculate the effect size. The effect size r [45] is determined using the formula

𝑟 = |𝑧 |/
√︁
𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑖𝑧𝑒 and ranges between 0 and 1. Generally, an effect size 𝑟 between 0.1 and 0.3

indicates a small effect, values greater than 0.3 and up to 0.5 indicate a medium effect, and values

greater than 0.5 indicate a large effect [15]. Similarly, we measure LOC, the number of assertions,

annotations, cyclomatic complexity, and readability, when the test method does/does not contain

Test SATDs. And then we examine the statistically significant difference between these two groups

using the Mann-Whitney U test.

7
https://github.com/javaparser/javaparser

8
https://github.com/bin-lin/TestSmellDetector

9
https://github.com/tushartushar/DesigniteJava

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/javaparser/javaparser
https://github.com/bin-lin/TestSmellDetector
https://github.com/tushartushar/DesigniteJava

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 11

4.2.3 RQ3 (Purposes of Test SATD). To understand developers’ intentions behind Test SATD, we

perform a manual inspection to categorize Test SATD. To facilitate the classification, we apply

several filters to exclude comments that do not contain meaningful content from the collected

Test SATD in the data collection process. Specifically, we remove comments that contain only tags

like TODO or FIXME without any other text. This filtering eliminates 651 SATD instances from the

original 2,779 instances. Additionally, we remove comments that are automatically inserted by

integrated development environments (IDEs) such as TODO Auto-generated method stub. This
step removes 36 SATD instances, leading to 2,092 remaining.

Next, we randomly select 506 SATD comments, which represent a statistically significant sample

with a 99% confidence level and a 5% confidence interval. For the classification, we adopted an

inductive coding approach, allowing categories to emerge directly from the data rather than starting

with pre-existing taxonomies from studies on production code or non-self-admitted technical debt.

This methodological decision was made to avoid categorization bias, as pre-existing categories

developed from production code might overlook patterns and issues unique to the test code context.

By developing the taxonomy from the ground up, we aimed to ensure that it precisely represents

how developers document debt in testing contexts and to enable the discovery of test-specific

insights.

The classification itself was conducted using a multi-stage, iterative approach based on card

sorting [66], consisting of five iterations with approximately 100 instances each. In the first iteration,

three authors independently assigned free-form labels to the initial 100 SATD instances to capture

their intent, allowing for variations in wording for similar concepts. Afterward, the three authors

discussed these labels. By resolving disagreements and grouping semantically similar labels, they

created an initial set of categories. In the subsequent four iterations, two authors independently

classified the remaining samples (in batches of approximately 100) using this initial category set.

A third author solved any disagreements that arose through the discussion with the others. If an

instance did not fit any existing category, a new category was proposed and added to the set after a

discussion among the three authors. The three annotators involved in this process have 5-15 years

of programming experience.

4.2.4 RQ4 (Automatic classification). To examine the extent to which we can accurately classify

the SATD types, in RQ4, we construct a classifier following the approach by Sabbah et al. [57] that
classifies production SATD types using natural language processing word embeddings. We utilize

the comment texts and labels assigned in RQ3 for the training and testing process.

Prior to training, we pre-process the comments by removing punctuation marks and HTML

tags. We then tokenize the comments, remove stop words, and perform stemming. The tokens are

converted into numerical vectors using Term Frequency-Inverse Document Frequency (TF-IDF) [34].

We also employ various machine-learning algorithms used in the previous studies [12, 25, 32],

including Support Vector Machines (SVM) [72], Naive Bayes (NB) [38], Random Forest [8] and

eXtreme Gradient Boosting (XGBoost) [11].

Additionally, we developed language model-based classifiers due to their high classification

accuracy demonstrated in previous studies [57]. Specifically, we employed BERT [21] and Code-

BERT [24], a pre-trained model capable of understanding the context of source code and natural

language. In our study, we replace the output layer of the model with a linear layer to enable the

model to classify SATD comments into five sub-categories of Test SATD. We employ GELU for

the activation function and AdamW for the optimizer. The maximum token length is set to 128,

the batch size to 16, and the maximum number of epochs to 20. To prevent overfitting [69] during

training, we employ early stopping [76], which halts training when the validation loss does not

improve for five consecutive epochs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

12 Nakamura et al.

Production Code Test Code

0

20

40

60

80

100

Nu
m

be
r o

f S
AT

Ds
 p

er
 1

0,
00

0
Lin

es
 o

f C
od

e

Fig. 3. Violin Plot of # SATD/10kLOC in Production and Test Code

Furthermore, we measure the performance of Large Language Models (LLMs) for Test SATD

classification. This was inspired by a recent study by Li et al. [41], which investigates the capabilities
of generative models such as ChatGPT for SATD detection. We constructed classifiers using two

models via the OpenAI API: GPT-3.5-turbo and GPT-4.1. Unlike the fine-tuning approach used

for CodeBERT, we employed a few-shot prompting strategy. For each SATD instance to be classified,

the prompt included a description of our five SATD categories along with typical examples of each

to guide the model’s reasoning. The performance of these LLM-based classifiers was evaluated on

the same dataset using the same metrics to ensure a direct comparison with our other models.

To assess model performance, we employed 10-fold cross-validation [22], a widely adopted

technique for robust evaluation. The dataset was randomly partitioned into ten equally sized folds.

In each iteration, nine folds were used for training and the remaining fold for testing, ensuring

that each fold served as the test set exactly once. For LLM-based classifiers (GPT-3.5-turbo and

GPT-4.1), which do not require training data, we applied the same 10-fold partitioning scheme but

used only the test folds for evaluation. Across all models, we measure performance using three

classic metrics: Precision, Recall, and F1-score. The F1 score is the harmonic mean of Precision and

Recall. Since there is a trade-off between Precision and Recall, the F1 score evaluates the balance

between Precision and Recall. In other words, it assesses whether the increase in Precision (or

Recall) outweighs the decrease in Recall (or Precision).

5 Results
5.1 𝑅𝑄1: How prevalent is SATD in test code?
By applying the SATD detection tool DebtHunter, we obtained a total of 14,987 and 2,779 SATD

instances in the production and test code, respectively. SATD in test code accounts for 15.6% of all

detected SATD, which differs from the result reported in Bavota et al. [7]. Their finding indicates
that test-related SATD accounts for only 8%, significantly lower than our results. This discrepancy

may be caused by three factors. First, we collected SATD instances from different repositories,

and half of them are used in testing-related studies, which might indicate that the repositories are

well-tested. Second, as the repositories in the previous study were collected in 2015 (those in ours

collected in 2024), writing tests have become more common recently [31, 33]. Third, the previous

studies manually analyzed whether the SATD is directly related to testing activities, while we count

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 13

SATD instances in test code instead. For example, if SATD is related to software implementation, it

will not fall into the test category even if it is located in the test code.

As the lines of code in the production code and test code differ significantly, we also compare the

normalized number of SATD instances. Figure 3 depicts the distribution of the numbers of SATD

per 10,000 lines of code for each repository. In these violin plots, the thickness of the outer layer

represents the probability density of the plotted values. In the center of each violin plot, the yellow

line shows the median while the box bar represents the interquartile range. When looking at the

quartiles, the number of SATD instances per 10k LOC range from 7.3 to 18.9 in the production code,

while from 1.6 to 14.1 in the test code. The average and median values for Production SATD are

also much higher than that for Test SATD (average: 15.6 vs. 9.5, median: 10.9 vs. 4.1). In terms of

median, the normalized number of Test SATD is 62.4% smaller than that of the Production SATDs.

A statistically significant difference is also observed with the Wilcoxon signed-rank test (p-value:

0.00006). In addition, the effect size (Cliff’s Delta) was found to be 0.365, indicating a medium

difference. Table 2 presents the detailed results of the statistical test.

RQ1. While there are fewer Test SATD instances than Production SATD (i.e., 10.9 and
4.1, respectively), the number is still non-negligible in the studied repositories.

Table 2. Summary of Key Statistical Test Results

Metrics Statistical Test p-value Effect Size

RQ1 SATD Density Wilcoxon signed-rank < 0.001 Medium (d = 0.365)

RQ2

LOC Mann-Whitney U < 0.001 Negligible (r = 0.009)

Assertions Mann-Whitney U 0.48 Negligible (r = 0.009)

Annotations Mann-Whitney U < 0.001 Negligible (r = 0.006)

Cyclomatic Comp. Mann-Whitney U < 0.001 Small (r = 0.014)

Readability Mann-Whitney U < 0.001 Negligible (r = 0.006)

Test Smells Mann-Whitney U 0.08 Negligible (r = 0.002)

Code Smells Mann-Whitney U < 0.001 Small (r = 0.013)

5.2 𝑅𝑄2: Is SATD in test code correlated with test quality?
We calculated test quality metrics for test methods with and without Test SATD. Figure 4 depicts

the distributions of each metric based on the presence or absence of Test SATDs. Table 2 presents

the detailed results of this test, including the p-value and effect size.

For lines of code (LOC) (Figure 4a), test methods with SATD had a median LOC of 8, which is

slightly higher than those without SATD (median LOC: 7). We applied the Mann-Whitney U test to

these two groups and observed a statistically significant difference (𝑝 = 2.32 × 10
−10, 𝑟 = 0.0094).

Note that the calculation of LOC excludes comments, indicating that test methods with SATD are

simply larger.

Regarding the number of assertions (Figure 4b), the medians were both 0, and no statistically

significant difference was observed (𝑝 = 0.48, 𝑟 = 0.00092). However, for the number of annotations

(Figure 4c), the medians were both 1, but on average, test methods with SATD had 0.79 annota-

tions, whereas those without SATD had 0.74 annotations. The Mann-Whitney U test identified a

statistically significant difference (𝑝 = 2.40 × 10
−6, 𝑟 = 0.0059).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

14 Nakamura et al.

Regarding readability (Figure 4d), we found a counter-intuitive result: the median for test methods

with SATD was 0.60, which is slightly higher than those without SATD (i.e., 0.59). A statistically

significant difference was observed with the Mann-Whitney U test (𝑝 = 4.02 × 10
−5
, 𝑟 = 0.006).

For cyclomatic complexity (Figure 4e), while the median was 1 for both groups, the mean for test

methods with SATD was 1.72, compared to 1.29 for methods without SATD. The Mann-Whitney

U test confirmed a statistically significant difference (𝑝 = 4.95 × 10
−48, 𝑟 = 0.014), clarifying that

methods with Test SATD tend to be structurally more complex.

For the number of test smells (Figure 4f), the medians were both 0, and no statistically significant

difference was observed by the Mann-Whitney U test (𝑝 = 0.08, 𝑟 = 0.0022). Additionally, we

conducted Chi-square test to examine the relationship between the presence of Test SATD and

test smells in methods. The observed frequencies of Test SATD and test smells are summarized in

Table 3. The chi-square test yielded 𝜒2 (1, 𝑁 = 447, 040) = 1.19, 𝑝 = 0.28, indicating no statistically

significant association between the presence of Test SATD and the presence of test smells.

Table 3. Confusion matrix of test methods with/without Test SATDs and Test Smells

With Test Smell Without Test Smell

With SATD 854 1,761

Without SATD 149,721 294,704

On the other hand, for the number of code smells, although the medians were both 0, the Mann-

Whitney U test showed a p-value of 1.36× 10
−24

, indicating a statistically significant difference with

a negligible effect (𝑟 = 0.013). This confirms that methods with Test SATD tend to have a statistically

higher number of code smells, but the difference is not large. We also performed the Chi-square

test to investigate the relationship between the presence of Test SATD and code smells (the metrics

are summarized in Table 4). The chi-square test yielded 𝜒2 (1, 𝑁 = 447, 040) = 49.3, 𝑝 = 2.25× 10
−12

,

indicating that there is a statistically significant difference. This contrast between the findings for

test smells and code smells is one of the key insights of our study. Our results show that while there

is a statistically significant correlation between the presence of Test SATD and the number of code

smells, we found no such correlation with the number of test smells. This implies that Test SATDs

are more likely to happen in test methods that have code quality issues rather than test-specific

design problems. In other words, Test SATD and test smells represent different facets of quality

issues in test code and can occur independently.

Table 4. Confusion matrix of test methods with/without Test SATDs and Code Smells

With Code Smell Without Code Smell

With Test SATD 1,041 1,574

Without Test SATD 147,996 296,429

Furthermore, we conducted a correlation analysis among these quality metrics. We calculated

Spearman’s rank correlation coefficient for all pairs of the seven metrics, separately for test methods

with and without SATD. The Spearman coefficient (𝜌) ranges from -1 to +1, indicating the direction

and strength of a monotonic relationship. A positive value indicates that as one metric increases,

the other tends to increase, while a negative value indicates that as one metric increases, the other

tends to decrease. Figure 5a and 5b visualize these correlation coefficients as two heatmaps.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 15

Overall, these two heatmaps present similar correlation trends between the two groups. However,

we observed notable differences in the correlations involving the number of annotations. The

largest difference was the correlation between Annotations and LOC, which was weakly positive

in methods without SATD (𝜌 = 0.288) but near zero in methods with SATD (𝜌 = −0.013), leading
to a difference of 0.301. Similarly, the correlation between Annotations and Assertions was also

considerably weaker in methods with SATD (𝜌 = 0.059) compared to those without (𝜌 = 0.267),

LOC
0

10

20

30

40

50

Th
e

lin
e

of
 c

od
e

Without SATD
With SATD

(a) LOC

Assertion
0
2
4
6
8

10
12
14
16
18
20

Th
e

nu
m

be
r o

f a
ss

er
tio

ns

Without SATD
With SATD

(b) Assertions

Annotation
0

1

2

3

4

5

6

Th
e

nu
m

be
r o

f a
nn

ot
at

io
ns

Without SATD
With SATD

(c) Annotations

Readability
0.0

0.2

0.4

0.6

0.8

1.0

Re
ad

ab
ilit

y

Without SATD
With SATD

(d) Readability

Cyclomatic Complexity
1
3
5
7
9

11
13
15
17
19
21

Cy
clo

m
at

ic
Co

m
pl

ex
ity

Without SATD
With SATD

(e) Cyclomatic Complexity

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

16 Nakamura et al.

Test Smell
0

2

4

6

8

10

12

14

16

Th
e

nu
m

be
r o

f T
es

t s
m

el
ls

Without SATD
With SATD

(f) Test smells

Code Smell
0

2

4

6

8

10

12

14

16

Th
e

nu
m

be
r o

f C
od

e
sm

el
ls

Without SATD
With SATD

(g) Code smells

Fig. 4. Distribution in software quality metrics measured in methods with and without Test SATD

with a difference of 0.208. These findings suggest that the role of annotations may change when

developers introduce SATD; in normal test methods, more annotations may be associated with

longer code and more assertions, but this relationship appears to break down in the presence of

technical debt.

LO
C

As
se

rti
on

s
An

no
tat

ion
s

Re
ad

ab
ilit

y

Cy
clo

mati
c C

om
ple

xit
y

Te
st

Sm
ell

s
Co

de
 Sm

ell
s

LOC

Assertions

Annotations

Readability

Cyclomatic Complexity

Test Smells

Code Smells

0.645

-0.013 0.059

-0.792 -0.630 0.057

0.472 0.134 -0.179 -0.344

0.322 0.427 0.191 -0.276 0.050

0.625 0.420 -0.047 -0.572 0.300 0.202

(a) With SATD

LO
C

As
se

rti
on

s
An

no
tat

ion
s

Re
ad

ab
ilit

y

Cy
clo

mati
c C

om
ple

xit
y

Te
st

Sm
ell

s
Co

de
 Sm

ell
s

LOC

Assertions

Annotations

Readability

Cyclomatic Complexity

Test Smells

Code Smells

0.589

0.288 0.267

-0.721 -0.560 -0.158

0.361 0.042 -0.084 -0.211

0.447 0.534 0.350 -0.390 -0.019

0.591 0.379 0.146 -0.514 0.190 0.347

(b) Without SATD

Fig. 5. Spearman Correlation Matrices with and without SATD

RQ2. Test methods with SATD have more lines of code, annotations, code smells,
readability, and complexity than those without SATD. However, there is no statistical
correlation between Test SATD and test smells, implying that these issues occur
independently.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 17

Table 5. Classification of Test SATD

Main Cat. Sub Cat. Detailed Category #

Production-

Failures

Indicates the failure-triggering environments/settings 11

originated

Indicates the failure-triggering inputs 4

issues On-hold

Indicates the existence of defects in production code 42

Tasks

Indicates the unimplemented production code 18

Specifies tasks to execute for debugging 7

Test-

Test Indicates incomplete or unimplemented tests 120

originated

Completeness Asks for extra test cases 17

issues

Test Design

Workaround for impossible/difficult implementations 53

and

Indicates non-optimal way of test implementation 44

Implementation

Provides an alternative way to implement/design the test 37

Doubts on specific test case design 14

Doubts on test implementation 9

Indicates the non-functional issues of tests 6

Test

Asks for test updates in response to future/latest software versions 17

Maintenance

Asks for test code restructuring/refactoring 9

Asks for add/update documentation 7

Indicates flaky tests 5

Asks for updates of used production code in tests 4

Asks for test deletion 4

Indicates invalid or unused tests 2

5.3 𝑅𝑄3: What are the purposes of SATD in test code?
We inspected 506 randomly selected SATD comments. The process of building the taxonomy, as

detailed in Section 4.2.3, was an iterative effort of labeling and merging. The initial fine-grained

labeling of the first batch of 100 instances yielded 146 distinct labels, which were then consolidated

into 50 initial categories after a reconciliation meeting. After the full set of 506 instances was

classified through the iterative process, a total of 64 categories had been identified. A final round of

discussion was then conducted to merge and refine these, resulting in the final taxonomy of 20

categories. Of the 506 instances, 407 instances (80.4%) are assigned with consistent labels from

both reviewers, resulting in a Cohen’s kappa coefficient of 0.78, indicating a substantial agreement

according to Landis and Koch [40]. The conflicts were resolved with a third annotator. Throughout

the manual inspection, we found that 36 instances were false positives (incorrectly detected as

SATD) and the label of 40 instances could not be assigned due to the lack of information. As a result,

430 SATD instances were included in the final results. Table 5 shows the final classification of Test

SATD and the breakdown of each category. In Table 6, we identified the top five most frequent

words for each category except typical SATD tags such as TODO and FIXME. In particular, we split

the words in SATD comments, removed stopwords using the NLTK library,
10
and identified the

most frequent words for each category.

In the following, we introduce each category, separated by the origin of issues (whether the issue

originated from production code or test code).

10
https://www.nltk.org

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://www.nltk.org

18 Nakamura et al.

Table 6. Most frequent words by subcategory

Subcategory Common words

Failures fails, test, enabled, passes, macos
On-hold Tasks currently, supported, yet, work, fix
Test Completeness assert, value, test, check, exception
Test Design and Implementation test, workaround, need, way, better
Test Maintenance remove, version, buffer, response, future

5.3.1 Production-originated Issues. This category includes issues intertwined with production code

or issues caused by the production code. A total of 82 Test SATD instances fall into this category.

Production-originated issues are further divided into the following subcategories:

Failures: This subcategory of SATD indicates the causes of test failures, which are related to

either environments/settings or inputs in the production code. 15 cases fell into this category, with

11 related to environments/settings and 4 related to specific inputs. The two most frequently words

are fails and enabled, which are related to test execution status. Bavota et al. [7] also introduced

examples of such failures, but their “Test debt” category does not contain any subcategories.

Similarly, the study by Kashiwa et al. [36] also presents a “Failure” category for test-related SATD,

but no further categorization was given. We separate the “failure”-related SATD into two types:

• Indicates the failure-triggering environments/settings: This type of SATD is used to

notify developers that a test will fail with a specific environment or configuration. In many

cases, developers comment out the assertions that fail or disable the whole test method.

Snippet 1 shows an example, including an access-related failure occurring only on Linux

and Windows.
11
This test method is enabled to run only on Mac OS, using “@EnabledOnOs”

annotation.
12

Listing 1. Example of SATD categorized into “Indicates the failure-triggering environments/settings”
1 /**
2 * TODO Passes on macOS, fails on Linux and Windows with

AccessDeniedException.↩→
3 */
4 @Test
5 @EnabledOnOs(value = OS.MAC)
6 public void testForceDeleteUnwritableDirectory() throws Exception {

• Indicates the failure-triggering inputs: This type of SATD notifies developers that the test

will fail when the production code receives a specific input, which is illustrated in Snippet 2.

In the example, the test is commented out due to a failure caused by a specific file.
13

Listing 2. Example of SATD categorized into “Indicates the failure-triggering inputs”
1 public void testReadCompressedAndroMDAProfileIssue5946() {
2 // TODO: uncomment the following to get the failure.
3 // assertLoadModel(ISSUE5946_BASE_DIR + "zipped-uml14"

11
https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/c

ommons/io/FileUtilsTest.java#L1730

12
https://junit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/condition/EnabledOnOs.html

13
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-core-

model-mdr/tests/org/argouml/model/mdr/TestReadCompressedFilesAndHref.java#L73

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/commons/io/FileUtilsTest.java#L1730
https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/commons/io/FileUtilsTest.java#L1730
https://junit.org/junit5/docs/5.2.0/api/org/junit/jupiter/api/condition/EnabledOnOs.html
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-core-model-mdr/tests/org/argouml/model/mdr/TestReadCompressedFilesAndHref.java#L73
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-core-model-mdr/tests/org/argouml/model/mdr/TestReadCompressedFilesAndHref.java#L73

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 19

4 // +

"/andromda-profile-datatype/3.3/andromda-profile-datatype-3.3.xml.zip",↩→
5 // null, "testReadCompressedAndroMDAProfileFileIssue5946");
6 }

On-hold Tasks: This subcategory of SATD indicates a test is on hold until a specific task in

production code is executed, such as new implementation or bug fixing. The prevalence of words

such as currently, yet shows that developers view these issues as temporary states with an

expectation of future resolution. The “On-hold SATD” is originally defined by Maipradit et al. [44],
which analyzed on-hold SATD in the production code without taking into account the tests. We

identified 67 cases in this category and the on-hold tasks in test code include the following types:

• Indicates the existence of defects in production code: This type of SATD is used to

inform developers of defects present in the production code. We identified 42 instances of

this type, making it the most prevalent on-hold task. Snippet 3 shows an example of this

category, where the test is currently disabled until the defect in the YARN project is fixed.
14

Listing 3. Example of SATD categorized into “Indicates the existence of defects in production code”
1 // FIXME:
2 // Disabled this test because currently, when shutdown hook triggered

at↩→
3 // lastRetry in RM view, cleanup will not do. This should be supported

after↩→
4 // YARN-2261 completed
5 // @Test (timeout = 30000)
6 public void testDeletionofStagingOnKillLastTry() throws IOException {

• Indicates the unimplemented production code: This type of SATD indicates that a

developer is waiting for the implementation of certain production code. An example can be

seen in Snippet 4, in which a method call is commented out because a function for a property

is not yet implemented.
15

Listing 4. Example of SATD categorized into “Indicates the unimplemented production code”
1 si.setTemplate(P_TEMPLATE);
2 // FIXME (byte array properties not yet implemented):

si.setThumbnail(P_THUMBNAIL);↩→
3 si.setTitle(P_TITLE);

• Specifies tasks to execute for debugging: This type of SATD informs developers of the

specific task to execute for debugging. As illustrated in Snippet 5, the SATD comment requests

an investigation into why the internal state is not visible during retry processing.
16

14
https://github.com/apache/hadoop/blob/bd8b77f398f626bb7791783192ee7a5dfaeec760/hadoop-mapreduce-

project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/test/java/org/apache/hadoop/mapreduce/v2/app/T

estStagingCleanup.java#L224-L227

15
https://github.com/apache/poi/blob/ae2f0945cd2ab37260e46ab46c54b8f68a131aea/poi/src/test/java/org/apache/poi/hps

f/basic/TestWriteWellKnown.java#L230

16
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-aws/camel-

aws-xray/src/test/java/org/apache/camel/component/aws/xray/ErrorTest.java#L43

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/hadoop/blob/bd8b77f398f626bb7791783192ee7a5dfaeec760/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/test/java/org/apache/hadoop/mapreduce/v2/app/TestStagingCleanup.java#L224-L227
https://github.com/apache/hadoop/blob/bd8b77f398f626bb7791783192ee7a5dfaeec760/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/test/java/org/apache/hadoop/mapreduce/v2/app/TestStagingCleanup.java#L224-L227
https://github.com/apache/hadoop/blob/bd8b77f398f626bb7791783192ee7a5dfaeec760/hadoop-mapreduce-project/hadoop-mapreduce-client/hadoop-mapreduce-client-app/src/test/java/org/apache/hadoop/mapreduce/v2/app/TestStagingCleanup.java#L224-L227
https://github.com/apache/poi/blob/ae2f0945cd2ab37260e46ab46c54b8f68a131aea/poi/src/test/java/org/apache/poi/hpsf/basic/TestWriteWellKnown.java#L230
https://github.com/apache/poi/blob/ae2f0945cd2ab37260e46ab46c54b8f68a131aea/poi/src/test/java/org/apache/poi/hpsf/basic/TestWriteWellKnown.java#L230
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-aws/camel-aws-xray/src/test/java/org/apache/camel/component/aws/xray/ErrorTest.java#L43
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-aws/camel-aws-xray/src/test/java/org/apache/camel/component/aws/xray/ErrorTest.java#L43

20 Nakamura et al.

Listing 5. Example of SATD categorized into “Specifies tasks to execute for debugging”
1 // FIXME: check why processors invoked in onRedelivery do not generate a

subsegment↩→
2 public ErrorTest() {

5.3.2 Test-originated Issues. This category includes issues originating from the test code. 348

relevant Test SATD instances are identified, which can be further divided into the following

subcategories:

Test Completeness: This subcategory of SATD pertains to the effectiveness and completeness

of test code, such as incomplete test implementations, insufficient test cases, or unclear intent

of test cases. The category featured words related to test case verification, such as check and

assert. A previous study [36] introduced the “Necessity” subcategory, which corresponds to our

“Indicates incomplete or unimplemented tests” or “Asks for extra test cases” categories. 137 cases

were identified in this category, with the most frequent one (120 cases) being “Indicates incomplete

or unimplemented tests”. The subcategories in this category are described as follows.

• Indicates incomplete or unimplemented tests: This type of SATD points out that the test

is either incomplete or unimplemented, leading to invalid or ineffective test cases. Snippet 6

shows an example of this subcategory, in which an assertion is needed to check the value

produced by the previous line.
17

Listing 6. Example of SATD categorized into “Indicates incomplete or unimplemented tests”
1 @Test(expected = BuildException.class)
2 public void testElementCreatorTwo() {
3 ih.getElementType("two");
4 // TODO we should be asserting a value in here
5 }

• Asks for extra test cases: This type of SATD indicates the need for extra test cases.

In contrast to “Indicates incomplete or unimplemented tests”, this type of SATD requests

implementing entire test methods rather than completing existing test methods. They are

often created to further ensure the behavior is correct or to improve test coverage. Snippet

7 shows an example where an additional test case is required to handle invalid two-byte

pairs.
18

Listing 7. Example of SATD categorized into “Asks for extra test cases”
1 @Test
2 public void validateUDTNested()
3 {
4 validate(nestedUDTGen());
5 }
6

7 // todo: for completeness, should test invalid two byte pairs.

17
https://github.com/apache/ant/blob/53f19eccf49acf526415997046dca5a5135b0e8f/src/tests/junit/org/apache/tools/ant/I

ntrospectionHelperTest.java#L128

18
https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/unit/org/apache/cassand

ra/db/marshal/TypeValidationTest.java#L256

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/ant/blob/53f19eccf49acf526415997046dca5a5135b0e8f/src/tests/junit/org/apache/tools/ant/IntrospectionHelperTest.java#L128
https://github.com/apache/ant/blob/53f19eccf49acf526415997046dca5a5135b0e8f/src/tests/junit/org/apache/tools/ant/IntrospectionHelperTest.java#L128
https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/unit/org/apache/cassandra/db/marshal/TypeValidationTest.java#L256
https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/unit/org/apache/cassandra/db/marshal/TypeValidationTest.java#L256

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 21

Test Design and Implementation: This subcategory of SATD is related to the design and imple-

mentation of test code. 163 cases fall into this category. The appearance of words like workaround
and better indicates that this category captures SATD related to suboptimal implementations or

design improvements needed in tests. The closest categories from related work are “Code debt” and

“Design Debt” from Bavota et al.’s [7]. In their subcategories, they also mentioned similar SATD

types related to “workaround”, “code quality”, and “design”. However, their categories focus on the

production code, while we investigate test code. In the test code, the relevant SATD can be further

categorized as follows:

• Indicates workaround for impossible/difficult implementations: This type of SATD
is used to inform developers about the workaround for code either impossible or difficult

to implement. This is the most frequent SATD type (53 instances) regarding Test Design

and Implementation. An example can be seen in Snippet 8, in which a developer attempted

to retrieve the value of a property, but the current implementation of the production code

prevents this due to encapsulation. Consequently, the developer resorted to using reflection

to obtain the value. The comment clarifies the rationale behind this implementation choice.
19

Listing 8. Example of SATD categorized into “Indicates workaround for impossible/difficult implementations”
1 @Test
2 public void testProperties() throws Exception {
3 // reflection hack ... no other way to get raw props ...
4 Field configField =

KafkaStreams.class.getDeclaredField("applicationConfigs");↩→
5 configField.setAccessible(true);
6 StreamsConfig config = (StreamsConfig) configField.get(streams);
7 ...

• Indicates non-optimal way of test implementation: This type of SATD is used to

highlight non-optimal implementations. Snippet 9 provides an example of such a case, where

a comment points out the use of a method or approach that is suboptimal. In this instance,

the SATD comment indicates that directly using DataFormatReifier is not the best practice
and suggests that a better approach should be considered.

20

Listing 9. Example of SATD categorized into “Indicates non-optimal way of test implementation”
1 private FhirDataFormat getDataformat(String name) {
2 CamelContext camelContext = context();
3 // TODO: Do not use reifier directly
4 return (FhirDataFormat)

DataFormatReifier.getDataFormat(camelContext, name);↩→
5 }

19
https://github.com/quarkusio/quarkus/blob/a91a36c533676a5d35ddedbef1717392c9191360/integration-tests/kafka-

streams/src/test/java/io/quarkus/it/kafka/streams/KafkaStreamsPropertiesTest.java#L26

20
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-fhir/camel-

fhir-component/src/test/java/org/apache/camel/component/fhir/dataformat/spring/FhirDataformatConfigSpringTest.jav

a#L90

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/quarkusio/quarkus/blob/a91a36c533676a5d35ddedbef1717392c9191360/integration-tests/kafka-streams/src/test/java/io/quarkus/it/kafka/streams/KafkaStreamsPropertiesTest.java#L26
https://github.com/quarkusio/quarkus/blob/a91a36c533676a5d35ddedbef1717392c9191360/integration-tests/kafka-streams/src/test/java/io/quarkus/it/kafka/streams/KafkaStreamsPropertiesTest.java#L26
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-fhir/camel-fhir-component/src/test/java/org/apache/camel/component/fhir/dataformat/spring/FhirDataformatConfigSpringTest.java#L90
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-fhir/camel-fhir-component/src/test/java/org/apache/camel/component/fhir/dataformat/spring/FhirDataformatConfigSpringTest.java#L90
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-fhir/camel-fhir-component/src/test/java/org/apache/camel/component/fhir/dataformat/spring/FhirDataformatConfigSpringTest.java#L90

22 Nakamura et al.

• Provides an alternative way to implement/design the test: This type of SATD is used to

propose a different way to implement the test. Snippet 10 provides an example of this type

of SATD, where the comment suggests using “interrupts” instead of notifyAll() to target

waiting threads more effectively.
21

Listing 10. Example of SATD categorized into “Provides an alternative way to implement/design the test”
1 if (waitingOnRelinquish)
2 {
3 waitingOnRelinquish = false;
4 monitor.notifyAll(); // TODO: could use interrupts to target waiting

anyway, avoiding notifyAll()↩→
5 }

• Doubts on specific test case design: This type of SATD raises questions about purposes,

validity or effectiveness of test cases. Snippet 11 provides an example where a developer

questioned the purpose of the test case and subsequently commented out the entire test

method.
22

Listing 11. Example of SATD categorized into “Doubts on specific test case design”
1 // TODO: what is this test?
2 // @Test
3 // public void testRecoverLimboFlushFailure() throws Exception {
4 // MockLedgerManager lm = new MockLedgerManager();
5 ...

• Doubts on test implementation: This type of SATD appears when developers are unclear

about whether the implementations are optimal or not. Snippet 12 provides an example,

in which the comment raises questions about the necessity of the Thread.sleep() call,

suggesting that a further review is needed.
23

Listing 12. Example of SATD categorized into “Doubts on test implementation”
1 mockResultEndpoint.expectedBodiesReceivedInAnyOrder(commitComment1,

commitComment2);↩→
2

3 Thread.sleep(1 * 1000); // TODO do I need this?
4

5 mockResultEndpoint.assertIsSatisfied();

• Indicates the non-functional issues of tests: This type of SATD is used to inform de-

velopers about non-functional issues in the test code, such as performance, scalability, or

resource usage. Snippet 13 provides an example, where the comment indicates that the test

takes an excessive amount of time to execute, potentially impacting overall test efficiency.
24

21
https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/simulator/main/org/apac

he/cassandra/simulator/systems/InterceptingMonitors.java#L363

22
https://github.com/apache/bookkeeper/blob/cce4b6461691466c663f2cb4d00dd4d73dd9071e/bookkeeper-server/src/test/

java/org/apache/bookkeeper/bookie/datainteg/DataIntegrityCheckTest.java#L410

23
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-

github/src/test/java/org/apache/camel/component/github/consumer/PullRequestCommentConsumerTest.java#L55

24
https://github.com/cloudfoundry/uaa/blob/5b74878c0297043860bb88434ee1123934acfe19/server/src/test/java/org/cloud

foundry/identity/uaa/util/CachingPasswordEncoderTest.java#L125

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/simulator/main/org/apache/cassandra/simulator/systems/InterceptingMonitors.java#L363
https://github.com/apache/cassandra/blob/6b134265620d6b39f9771d92edd29abdfd27de6a/test/simulator/main/org/apache/cassandra/simulator/systems/InterceptingMonitors.java#L363
https://github.com/apache/bookkeeper/blob/cce4b6461691466c663f2cb4d00dd4d73dd9071e/bookkeeper-server/src/test/java/org/apache/bookkeeper/bookie/datainteg/DataIntegrityCheckTest.java#L410
https://github.com/apache/bookkeeper/blob/cce4b6461691466c663f2cb4d00dd4d73dd9071e/bookkeeper-server/src/test/java/org/apache/bookkeeper/bookie/datainteg/DataIntegrityCheckTest.java#L410
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-github/src/test/java/org/apache/camel/component/github/consumer/PullRequestCommentConsumerTest.java#L55
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-github/src/test/java/org/apache/camel/component/github/consumer/PullRequestCommentConsumerTest.java#L55
https://github.com/cloudfoundry/uaa/blob/5b74878c0297043860bb88434ee1123934acfe19/server/src/test/java/org/cloudfoundry/identity/uaa/util/CachingPasswordEncoderTest.java#L125
https://github.com/cloudfoundry/uaa/blob/5b74878c0297043860bb88434ee1123934acfe19/server/src/test/java/org/cloudfoundry/identity/uaa/util/CachingPasswordEncoderTest.java#L125

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 23

Listing 13. Example of SATD categorized into “Indicates the non-functional issues of tests”
1 @Test
2 // TODO: This test takes a long time to run :(
3 void ensureNoMemoryLeak() {

Test Maintenance: This subcategory of SATD is related to test code maintenance. These SATD

instances indicate the need for updates in future versions, refactoring, fixing flaky tests, and adding

documentation. Frequent terms such as remove and version indicate that this category captures

SATD related to test code management, including cleanup and version updates. This subcategory

does not exist in Bavota et al.’s work [7], but “Asks for test updates in response to future/latest

software versions” partially matches the “Future work” subcategory in Kashiwa et al.’s study [36].

We identified 48 cases in this category, with the most frequent subcategory being “Asks for test

updates in response to future/latest software versions,” represented by 17 instances. The details of

each subcategory are described below.

• Asks for test updates in response to future/latest software versions: This type of

SATD is used to inform developers that the test needs to be updated in a future version of

production code. Snippet 14 provides an example of this subcategory. The comment suggests

the removal of the reference to SecurityManager in this test case when the project updates

the version of the programming language Groovy, as the class is discontinued in the new

version.
25

Listing 14. Example of SATD categorized into “Asks for test updates in response to future/latest software
versions”

1 @SuppressWarnings("removal") // TODO in a future Groovy version remove

reference to SecurityManager, for now not run for JDK18+↩→
2 public void testInvokesPrivateMethodsInGroovyObjectsWithoutChecks()

throws Exception {↩→
3 if (isAtLeastJdk("18.0")) return;
4 ...

• Asks for test code restructuring/refactoring: This type of SATD is used to notify devel-

opers that the test code needs to be restructured or refactored. Snippet 15 shows an example,

where the SATD comment suggests making the contract more explicit or extracting common

code to improve readability and maintainability.
26
When looking into 9 cases, most of the

SATDs request structural refactoring, including five instances of Move Method/Class, two

of Extract Method, one of Rename Method, and one involving data structure changes

(e.g., Introduce Parameter Object). We also found that only one case co-occurred with a test

smell (specifically, “Assertion Roulette”), reinforcing our finding that Test SATD and test

smells are largely independent issues.

25
https://github.com/apache/groovy/blob/f6221ee780bfb2f84fb197da2c13387c4e93a019/src/test/org/codehaus/groovy/re

flection/SecurityTest.java#L301

26
https://github.com/apache/flink/blob/eaffd227d853e0cdef03f1af5016e00f950930a9/flink-state-backends/f link-

statebackend-changelog/src/test/java/org/apache/flink/state/changelog/ChangelogStateDiscardTest.java#L376

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/groovy/blob/f6221ee780bfb2f84fb197da2c13387c4e93a019/src/test/org/codehaus/groovy/reflection/SecurityTest.java#L301
https://github.com/apache/groovy/blob/f6221ee780bfb2f84fb197da2c13387c4e93a019/src/test/org/codehaus/groovy/reflection/SecurityTest.java#L301
https://github.com/apache/flink/blob/eaffd227d853e0cdef03f1af5016e00f950930a9/flink-state-backends/flink-statebackend-changelog/src/test/java/org/apache/flink/state/changelog/ChangelogStateDiscardTest.java#L376
https://github.com/apache/flink/blob/eaffd227d853e0cdef03f1af5016e00f950930a9/flink-state-backends/flink-statebackend-changelog/src/test/java/org/apache/flink/state/changelog/ChangelogStateDiscardTest.java#L376

24 Nakamura et al.

Listing 15. Example of SATD categorized into “Asks for test code restructuring / refactoring”
1 // todo: make the contract more explicit or extract common code
2 Map<UploadTask, Map<StateChangeSet, Tuple2<Long, Long>>>

taskOffsets =↩→
3 tasks.stream().collect(toMap(identity(),

this::mapOffsets));↩→

• Asks for add/update documentation: This type of SATD is used to request additional

documentation or updates to the documentation to understand the goals and implementation

of the test code. Snippet 16 provides an example, where a comment highlights the need for

documentation to clarify specific behavior.
27

Listing 16. Example of SATD categorized into “Asks for add/update documentation”
1 // TODO document this behaviour.
2 // Is it different AspectJ behaviour, at least for checked exceptions?
3 @Test
4 void aspectMethodThrowsExceptionIllegalOnSignature() {
5 TestBean target = new TestBean();
6 RemoteException expectedException = new RemoteException();
7 List<Advisor> advisors = getAdvisorFactory().getAdvisors(
8 aspectInstanceFactory(new

ExceptionThrowingAspect(expectedException), "someBean"));↩→
9 assertThat(advisors).as("One advice method was found").hasSize(1);
10 ITestBean itb = createProxy(target, ITestBean.class, advisors);
11 assertThatExceptionOfType(UndeclaredThrowableException.class)
12 .isThrownBy(itb::getAge)
13 .withCause(expectedException);
14 }

• Indicates flaky tests:This type of SATD informs developers that the test is unstable—sometimes

passing and sometimes failing (i.e., flaky tests) [23]. Snippet 17 provides an example of such

SATD. In this instance, the comment warns that the implementation causes flaky tests.
28

Listing 17. Example of SATD categorized into “Indicates flaky tests”
1 /**
2 * TODO Fails randomly.
3 */
4 @Test
5 public void testWaitForInterrupted() throws InterruptedException {

• Asks for updates of used production code in tests: This type of SATD is used to indicate

outdated production code used in the test. Snippet 18 provides an example, where a comment

requests updating the test to use a new conflict resolver.
29

27
https://github.com/spring-projects/spring-framework/blob/f85d5bd84a7e7bc810bb5a8179fc2fc130affc89/spring-

aop/src/test/java/org/springframework/aop/aspectj/annotation/AbstractAspectJAdvisorFactoryTests.java#L435

28
https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/c

ommons/io/FileUtilsWaitForTest.java#L42

29
https://github.com/apache/maven/blob/8b094c9513efc1b9ce2d952b3b9c8eaedaf8cbf0/maven-compat/src/test/java/org/a

pache/maven/repository/legacy/resolver/DefaultArtifactCollectorTest.java#L155

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/spring-projects/spring-framework/blob/f85d5bd84a7e7bc810bb5a8179fc2fc130affc89/spring-aop/src/test/java/org/springframework/aop/aspectj/annotation/AbstractAspectJAdvisorFactoryTests.java#L435
https://github.com/spring-projects/spring-framework/blob/f85d5bd84a7e7bc810bb5a8179fc2fc130affc89/spring-aop/src/test/java/org/springframework/aop/aspectj/annotation/AbstractAspectJAdvisorFactoryTests.java#L435
https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/commons/io/FileUtilsWaitForTest.java#L42
https://github.com/apache/commons-io/blob/290d72eda9152d1e11b79d48453908ff3f6b9897/src/test/java/org/apache/commons/io/FileUtilsWaitForTest.java#L42
https://github.com/apache/maven/blob/8b094c9513efc1b9ce2d952b3b9c8eaedaf8cbf0/maven-compat/src/test/java/org/apache/maven/repository/legacy/resolver/DefaultArtifactCollectorTest.java#L155
https://github.com/apache/maven/blob/8b094c9513efc1b9ce2d952b3b9c8eaedaf8cbf0/maven-compat/src/test/java/org/apache/maven/repository/legacy/resolver/DefaultArtifactCollectorTest.java#L155

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 25

Listing 18. Example of SATD categorized into “Asks for updates of used production code in tests”
1 public void

disabledtestResolveCorrectDependenciesWhenDifferentDependenciesOnNewest()↩→
2 throws ArtifactResolutionException,

InvalidVersionSpecificationException {↩→
3 // TODO use newest conflict resolver
4 ArtifactSpec a = createArtifactSpec("a", "1.0");
5 ArtifactSpec b = a.addDependency("b", "1.0");
6 ArtifactSpec c2 = b.addDependency("c", "2.0");
7 ArtifactSpec d = c2.addDependency("d", "1.0");

• Asks for test deletion: This type of SATD is used to report unnecessary tests. Snippet

19 provides an example, where a comment requests the deletion of a test that is no longer

needed.
30

Listing 19. Example of SATD categorized into “Asks for test deletion”
1 // TODO remove this test
2 @Test
3 void testStaticConstructor() throws NoSuchFieldException {

• Indicates invalid or unused tests: This type of SATD is used to inform other developers

that the test is currently invalid or unused. Snippet 20 provides an example of such SATD,

where the comment asks other developers to verify if the test is unused.
31

Listing 20. Example of SATD categorized into “Indicates invalid or unused tests”
1 /**
2 * @throws SAXException when things go wrong with SAX
3 * @throws IOException when there's an IO error
4 * @throws ParserConfigurationException when the parser finds wrong

syntax↩→
5 *
6 * TODO: Unused?
7 */
8 public void testDataModel()
9 throws SAXException,
10 IOException,
11 ParserConfigurationException {

RQ3. Test SATD serves various purposes and can be classified into fivemajor categories
related to 20 types of issues. The most frequent purpose of Test SATD is “Indicating
incomplete or unimplemented tests”. Additionally, most of the issues identified in
this study do not fit the existing categories proposed by previous studies, highlighting
the differences between SATD in the production and test code.

30
https://github.com/apache/dubbo/blob/3609ddb2259ad223f6c0a827e36f6f8ccd38c6b2/dubbo-config/dubbo-config-

api/src/test/java/org/apache/dubbo/config/MethodConfigTest.java#L111

31
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-

app/tests/org/argouml/model/TestAgainstUmlModel.java#L91

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/dubbo/blob/3609ddb2259ad223f6c0a827e36f6f8ccd38c6b2/dubbo-config/dubbo-config-api/src/test/java/org/apache/dubbo/config/MethodConfigTest.java#L111
https://github.com/apache/dubbo/blob/3609ddb2259ad223f6c0a827e36f6f8ccd38c6b2/dubbo-config/dubbo-config-api/src/test/java/org/apache/dubbo/config/MethodConfigTest.java#L111
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-app/tests/org/argouml/model/TestAgainstUmlModel.java#L91
https://github.com/argouml-tigris-org/argouml/blob/6b6db0242a40f80655cbfdddcca246afe23df20c/src/argouml-app/tests/org/argouml/model/TestAgainstUmlModel.java#L91

26 Nakamura et al.

5.4 𝑅𝑄4: To what extent can SATD in Test Code be classified automatically?
Table 7 presents the results of classifying Test SATD into five subcategories using machine-learning

and deep-learning classifiers. First, in terms of precision, the GPT-3.5-turbo model achieved the high-

est overall precision (i.e., 0.77), indicating its effectiveness in preventing false positives. Conversely,

the XGBoost classifier exhibited the lowest overall precision, with a value of 0.59.

When looking into the recall, deep-learning models overall outperformed traditional machine-

learning models. The highest recall of 0.67 was jointly achieved by the fine-tuned CodeBERT model

and the large language model GPT-4.1. The BERT-based classifier also performed well with a recall

of 0.64. In contrast, the Naive Bayes classifier recorded the lowest recall at 0.39, resulting in a higher

number of undetected instances.

In terms of F1-score, the CodeBERT-based classifier achieved the highest overall score (i.e., 0.70),
demonstrating robustness in accurately identifying relevant SATD instances while minimizing

misclassifications. Notably, the superiority of CodeBERT over BERT suggests that characteristic

words specific to test code are more prevalent than in natural language, a finding also observed in

studies focusing on production code [62].

Figure 6 presents a Venn diagram illustrating the distribution of correctly classified instances

among the top five classifiers by F1-score.
32

185 out of 430 instances were correctly predicted

by all the classifiers. Furthermore, this qualitative analysis highlights a crucial finding that the

F1-score alone does not capture: the GPT-4.1 model made the most uniquely correct predictions (17

instances), surpassing all other models, including the top-performing CodeBERT. This strongly

suggests that while CodeBERT is a robust, well-balanced classifier, modern LLMs like GPT-4.1

possess a distinct capability to understand different semantic nuances in SATD comments that

other models may miss.

Next, looking into the prediction performance for subcategories, the best-performing model

CodeBERT exhibits outstanding performance for predicting SATDs falling into “Test Completeness”

category (i.e., F1 score of 0.83). On the other hand, the lowest F1-score was observed in the “Failures”

category with a value of 0.54. In particular, instances of the “Failures” category were frequently

misclassified as “On-hold Task”. For example, we observe several cases that have a trigger condition

which is often used in “On-hold Task” category such as “TODO: WriteResult isn’t returned
when inserting”.33 This low performance is likely to be caused by the lack of instances (i.e., the
dataset contains only 15 instances from the “Failures” category). Our future work will extend the

dataset to increase the number of SATD that fall into these smaller categories.

RQ4. The CodeBERT-based model outperforms other machine learning models in
terms of Recall and F1-Score (0.67 and 0.70, respectively). It achieves the highest
performance in the category of “Test Completeness” (0.83), while showing the low-
est performance in the “Failures” category (0.54). While the prediction results are
reasonable, there is still large room for improvement.

32
Our Venn diagram does not include results from all eight classifiers as such plots are unreadable. Instead, plots with five

classifiers are easier to comprehend.

33
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-

mongodb/src/test/java/org/apache/camel/component/mongodb/integration/MongoDbHeaderHandlingIT.java#L71

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-mongodb/src/test/java/org/apache/camel/component/mongodb/integration/MongoDbHeaderHandlingIT.java#L71
https://github.com/apache/camel/blob/66736471db8ddc22e50cc31c87d34b072455b488/components/camel-mongodb/src/test/java/org/apache/camel/component/mongodb/integration/MongoDbHeaderHandlingIT.java#L71

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 27

Table 7. Performance comparison using different machine-learning or deep-learning algorithms

(a) SVM (Accuracy: 0.63)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.83 0.71 0.73 0.54 1.00 0.76

Recall 0.33 0.36 0.61 0.87 0.31 0.50

F1-Score 0.48 0.48 0.67 0.67 0.48 0.55

(b) Naive Bayes (Accuracy: 0.59)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.00 0.87 0.57 0.56 1.00 0.60

Recall 0.00 0.19 0.73 0.78 0.25 0.39

F1-Score 0.00 0.32 0.64 0.65 0.40 0.40

(c) XGBoost (Accuracy: 0.61)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.54 0.61 0.64 0.61 0.54 0.59

Recall 0.47 0.52 0.63 0.71 0.42 0.55

F1-Score 0.50 0.56 0.63 0.66 0.47 0.57

(d) Random Forest (Accuracy: 0.66)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.67 0.76 0.73 0.58 0.91 0.73

Recall 0.27 0.37 0.69 0.85 0.42 0.52

F1-Score 0.38 0.50 0.71 0.69 0.57 0.57

(e) BERT (Accuracy: 0.74)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.55 0.59 0.83 0.74 0.73 0.69

Recall 0.40 0.54 0.79 0.85 0.62 0.64

F1-Score 0.46 0.56 0.81 0.79 0.67 0.66

(f) CodeBERT (Accuracy: 0.77)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.64 0.65 0.85 0.77 0.72 0.73

Recall 0.47 0.63 0.82 0.86 0.60 0.67
F1-Score 0.54 0.64 0.83 0.81 0.66 0.70

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

28 Nakamura et al.

(g) GPT-3.5-turbo (Accuracy: 0.59)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 1.00 1.00 0.93 0.55 0.41 0.77
Recall 0.40 0.07 0.45 0.91 0.69 0.50

F1-Score 0.57 0.14 0.61 0.69 0.51 0.50

(h) GPT-4.1 (Accuracy: 0.73)

Failures On-hold Task Test Completeness

Test Design

and Implementation

Test Maintenance Average

Precision 0.45 0.61 0.95 0.71 0.58 0.66

Recall 0.60 0.30 0.72 0.89 0.83 0.67
F1-Score 0.51 0.40 0.82 0.79 0.68 0.64

6 519

5
1

1

4

17

11

6

25

4
7

1

4
3

0
26

4

2 3
25

5

4

4

22

3

9

6

185

Random Forest

GPT-4.1

XGBoost

BERTCodeBERT

Fig. 6. Venn diagram of correct predictions for the top five classification models

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 29

Fa
ilu

re
s

On-
ho

ld
Ta

sk

Te
st

Com
ple

ten
es

s

Te
st

Des
ign

an
d I

mple
men

tat
ion

Te
st

Main
ten

an
ce

0

1

2

3

4

5

6

7

Th
e

nu
m

be
r o

f t
es

t s
m

el
ls

Fig. 7. The number of test smells by category

6 Discussions
6.1 Test Smells with Types of Test SATD
RQ2 examined the correlation between SATD in test code and various test quality indicators,

including general code quality metrics (like code smells, lines of code, complexity, and readability)

and test-specific metrics (such as test smells, assertions, and annotations) at the method level. RQ3

investigated the purposes and types of Test SATD, leading to a detailed taxonomy of 20 issue types

categorized into five main groups.

While RQ2 found no direct statistical correlation between the general presence of Test SATD and

test smells, it was not clear whether specific types of Test SATD identified in RQ3 might impact

test quality, particularly regarding test smells. To examine this further, an additional analysis was

conducted to study the impact of each type of SATD on quality aspects. This analysis leveraged

the CodeBERT-based classifier, which was developed in RQ4 and demonstrated the highest overall

performance (F1-score of 0.70) among the evaluated models for automatically classifying Test SATD

types. This classifier was applied to all 2,092 filtered SATD instances to enhance the reliability and

comprehensiveness of the analysis.

Figure 7 shows the distribution of the number of test smells across the SATD subcategories.

Focusing on the median values, we observed that the “Test Completeness” and “Failures” categories

had a median of 1, while the other categories had a median of 0. To determine whether there

was a statistically significant difference in the number of test smells among the subcategories,

we performed a Kruskal-Wallis test. As a result, we observed a statistically significant difference

(𝑝 < 0.05). Furthermore, we conducted a post-hoc analysis using Dunn’s Post-Hoc Test with a

Bonferroni correction to deal with the family-wise error rate. We found that the “Failures” and

“Test Completeness” categories (median=1) contained significantly more test smells than the other

three categories (“On-hold Task,” “Test Design and Implementation,” and “Test Maintenance,” all

median=0), with 𝑝 < 0.05.

6.2 Lessons Learned
This study investigates Test SATD to reveal its prevalence, relationship with quality metrics, and

types. Additionally, we develop classifiers to categorize the types of Test SATD. Through this

comprehensive study, we gained the following five key insights that inform both research and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

30 Nakamura et al.

Table 8. Comparison with the study of Bavota et al. [7]

Aspect Bavota et al. [7] Our Study

Studied Ecosystems 2 Ecosystems 24 Ecosystems

(Eclipse and Apache) (Apache, Spring, Gradle, etc.)

Studied projects 159 projects 50 projects

Studied year 2016 2025

Scope of the study All Java code All Java code

(separated into prod. and test code)

Instances for qualitative analysis 366 Prod. SATD 506 Test SATD

% Test-related SATD 8% 15.6%

Test Categories 1 category (i.e., “Test” category) 5 categories

Test Sub-categories None 20 Sub-categories

practice in test code quality management. Table 8 summarizes the differences in findings of the

previous study and our study to facilitate our discussion.

Lesson 1. Test SATD Is Distinct from Production SATD.
A key lesson learned is that SATD in test code is not simply a secondary concern to production

code SATD; it is a distinct phenomenon with unique characteristics and developer intentions. We

identified 20 specific types of issues, categorized into five main groups, many of which do not

directly align with existing categories for production code SATD. Notably, test-specific categories

like “Doubts on specific test case design” emerged from our data but were absent even from general

technical debt studies (i.e., not only self-admitted technical debt). This divergence demonstrates that

assuming similar characteristics for SATD across production and test code is an oversimplification.

Furthermore, we observed a significantly larger proportion of Test SATD (15.6%) compared to

an 8% finding in a previous study from a decade ago. This temporal shift reflects the increasing

emphasis on test writing in modern software development, underscoring the growing importance

of addressing test code quality.

Lesson 2. Developers Frequently Leave Incomplete Tests as SATD.
The most frequent category of Test SATD identified was “Indicates incomplete or unimplemented

tests” (120 out of 430 classified instances). This prevalence indicates a common developer practice

of leaving SATD for missing assertions or entire test methods, even when the task might seem

minor. A profound lesson here is the need to understand why developers choose to document

these incomplete tasks as SATD rather than finishing them immediately. This behavior warrants

further qualitative investigation through surveys or interviews to uncover the underlying reasons,

such as time constraints, workflow interruptions, or perceived complexity of the remaining task.

This insight also suggests a practical application: developers could benefit from specialized code

completion tools tailored for test code, which might help address this specific form of technical

debt proactively.

Lesson 3. SATD Comments Reveal Issues Beyond Test Smells.
Our study revealed a lack of a direct statistical correlation between Test SATD and test smells. This

is a critical lesson: developers are explicitly flagging issues in test code that are often not detected

by current automated test smell tools. This implies that existing test smell detection mechanisms

are not fully capturing the spectrum of issues developers recognize and admit. This gap presents a

clear opportunity for researchers and tool developers to leverage Test SATD comments as a rich,

developer-centric source to identify new or overlooked types of test smells, thereby enhancing

automated quality assurance tools.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 31

Lesson 4. Manual Classification Is Inherently Ambiguous.
Our manual classification process, while rigorous, highlighted the inherent complexity in precisely

categorizing developer intentions behind SATD comments. We employed a card sorting approach

with independent labeling by two experienced annotators, and conflicts were resolved by a third,

resulting in a Cohen’s kappa coefficient of 0.78, indicating substantial agreement. This experience

taught us that even with structured methods and expert annotators, ambiguity and misidentification

can occur, suggesting that future efforts in SATD classification could benefit from more context-rich

or interactive annotation processes.

Lesson 5. Data Imbalance Hampers ML-Based SATD Classification.
The performance of our machine learning models varied significantly across categories, with a

noticeable drop for categories with fewer instances, such as the “Failures” category, which had only

15 instances in our dataset. While the CodeBERT-based classifier achieved the highest F1-score

of 0.70 overall, its performance for “Failures” was the lowest at 0.54. This clearly demonstrates

the impact of data imbalance on classification accuracy. A crucial lesson here is the need for a

significantly larger and more balanced dataset to improve the robustness and accuracy of automatic

SATD classification, especially for less frequent but potentially critical types of debt.

6.3 Implications
In this section, we discuss the implications for developers and researchers, mapping the findings to

the research questions.

Implication 1. Test SATD should not be considered as a negligible concern.
RQ1 revealed that a non-negligible number of Test SATD instances exist in software repositories.

Specifically, software testing plays a crucial role in modern software development, necessitating

more proactive test writing than before [31, 33]. In fact, we observed a significantly larger ratio of

Test SATD compared to a previous study conducted a decade ago [6], despite examining different

projects. Many recent studies have reported that the quality of test code leads to serious quality

issues in production [4, 65]. This suggests that researchers should recognize the importance of
studying SATD not only in production code but also in test code. As previous studies have done for
production code, future research should investigate the impact of Test SATD on reliability [74] and

maintainability [53] of software.

Implication 2. Test SATD is likely to be associated with code quality issues.
RQ2 clarified that methods containing Test SATD have more lines of code (LOC), annotations,

complexity, and code smells than methods without Test SATD. From the perspectives of LOC,

annotations, and complexity, this suggests that Test SATD tends to reside in larger and more

complex test code. However, we also found that Test SATD is not associated with test smells (i.e.,
they are independent). This implies that test smell detection tools are not identifying most of the

test issues, which is a gap to be filled by researchers and tool developers. Compared with code

smells, test smells are a relatively recent concept and are still under development. Therefore, we

recommend that researchers and tool developers should endeavor to identify new types of test smells,
referring to Test SATD in practice.
Implication 3. Developers should consider using code completion tools specialized in test
code.

RQ3 categorizes the types of Test SATD.We found that themost frequent categorywas “Indicating

incomplete or unimplemented tests.” This suggests that developers often stop writing assertions

and document unfinished tests or insufficient test cases as SATD. This behavior may be due to

limited time or other constraints, but assertions are usually written with only a few lines of code.

It is unclear why developers leave a few-line comments instead of writing assertions. Therefore,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

32 Nakamura et al.

we recommend that researchers investigate why developers did not finish writing assertions through
surveys or interviews. Additionally, practitioners could consider using copilot tools, especially code
completion tools for test code [49, 78].

Implication 4. Test SATD can be automatically classified but the performance could be
still improved.
Existing SATD classification tools primarily focused on production code, and no classifier had

been developed to categorize SATD in test code. To address this issue, in RQ4, we developed a

classifier for Test SATD and trained it based on the classification results of RQ3. As a result, the

classifier utilizing CodeBERT demonstrated the highest performance compared to other models.

While the classifiers demonstrated the feasibility of automatically classifying Test SATD, they

achieved a maximum F1-Score of 0.70, which is far from perfect. Therefore, researchers and tool
developers may perform further manual inspections to extend the dataset and retrain the model with a
larger dataset to improve the classification performance.

7 Threats to validity
Threats to internal validity concern the factors we did not consider that might impact the results.

The manual classification in this study was independently conducted by two inspectors to reduce

subjective bias. The Cohen’s kappa coefficient was 0.78, indicating a high level of agreement.

Disagreements were resolved with a third inspector. Despite these measures, the misinterpretation

of SATD comments cannot be entirely ruled out.

Threats to construct validity concern the relation between theory and observation. This study

analyzed SATD within test code. A previous study [7] has found that SATD instances in the

production code may also point out test-related issues, which are not included in our studies. We

believe the number of SATD instances related to testing in the production code is relatively small,

but future research could consider production code when identifying test-related SATD.

The imbalanced distribution across categories poses validity concerns. The most infrequent

category, “Failures,” contains only 15 instances, which may not adequately represent the full

spectrum of this construct. While this imbalance problem is common in software engineering

research [60, 68], this imbalance directly affects the validity of our performance measurements:

during 10-fold cross-validation, several test sets contained only a single “Failures” instance, poten-

tially leading to unstable performance estimates that may not accurately reflect the model’s true

ability to identify this category. While using median performance metrics partially addresses this

threat, we cannot claim equal measurement validity across all categories.

Threats to external validity concern the generalizability of our findings. In this study, the manual

classification was performed on a sampled subset of detected SATD. To mitigate sampling bias, we

applied random sampling to satisfy a 99% confidence level and a 5% margin of error, and the study

included 50 repositories, which is more than in other studies [20, 36]. Nevertheless, the possible

bias due to repository selection remains. Furthermore, our work primarily studied open-source

projects because code access was necessary for the analysis. It is unclear whether proprietary

projects exhibit the same patterns as shown in our results.

In addition, our sample of 506 instances may underrepresent rare but potentially important Test

SATD categories (e.g., our “Failures” category has only 15 instances). However, from a statistical

perspective, the distribution of categories in our sample likely reflects their natural prevalence in

software systems in the wild. The rarity of certain SATD types, such as “Failures,” may indicate their

actual low frequency of occurrence rather than a sampling bias. While increasing the dataset size

might yield more instances of rare categories, the proportional distribution might remain similar.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 33

8 Conclusion
In this study, we conduct a large-scale empirical investigation into the nature of Self-Admitted

Technical Debt in test code, an area often overlooked in existing research. We collected 17,766 SATD

comments (14,987 from production code, 2,779 from test code) from 50 repositories and analyzed

their prevalence, relationship with various quality metrics, specific types, and the feasibility of

their automatic classification.

Our findings reveal several key insights. First, Test SATD is a non-negligible phenomenon,

accounting for 15.6% of all SATD instances across 50 projects. Second, we found that Test SATD

correlates with general code quality issues like code smells and complexity, but notably, it does not

correlate with test smells, suggesting that SATD and test smells represent distinct quality concerns.

Third, through manual analysis, we developed a detailed taxonomy of 20 types of Test SATD,

finding that the most common reason developers admit debt is due to incomplete or unimplemented

tests. Finally, we demonstrated the feasibility of automatically classifying these SATD types, with

a CodeBERT-based model showing the most balanced performance, though we also found that

modern LLMs like GPT-4.1 can identify unique instances that other models miss.

Our future work will focus on two main directions: (i) expanding our manually labeled dataset

to improve the performance and robustness of our classification models, and (ii) analyzing the

evolution of Test SATD over time to understand its lifecycle and resolution patterns.

Acknowledgments
Wegratefully acknowledge the financial support of JSPS KAKENHI grants (JP24K02921, JP25K21359),

as well as JST PRESTO grant (JPMJPR22P3), ASPIRE grant (JPMJAP2415), and AIP Accelerated

Program (JPMJCR25U7).

References
[1] Nicolli S. R. Alves, Manoel Gomes de Mendonça Neto, and Rodrigo Oliveira Spínola. 2018. A tertiary study on technical

debt: Types, management strategies, research trends, and base information for practitioners. Information and Software
Technology 102 (2018), 117–145.

[2] Nicolli S. R. Alves, Thiago Souto Mendes, Manoel Gomes de Mendonça Neto, Rodrigo O. Spínola, Forrest Shull, and

Carolyn B. Seaman. 2016. Identification and management of technical debt: A systematic mapping study. Information
and Software Technology 70 (2016), 100–121.

[3] Nicolli S. R. Alves, Leilane Ferreira Ribeiro, Vivyane Caires, Thiago Souto Mendes, and Rodrigo O. Spínola. 2014.

Towards an Ontology of Terms on Technical Debt. In Proceedings of the 6th International Workshop on Managing
Technical Debt (MTD 2014). 1–7.

[4] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. 2014. Test Code Quality and Its Relation to

Issue Handling Performance. IEEE Transactions on Software Engineering 40, 11 (2014), 1100–1125.

[5] Hideaki Azuma, Shinsuke Matsumoto, Yasutaka Kamei, and Shinji Kusumoto. 2022. An empirical study on self-admitted

technical debt in Dockerfiles. Empirical Software Engineering 27, 2 (2022), 49.

[6] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and Dave W. Binkley. 2015. Are test smells really

harmful? An empirical study. Empirical Software Engineering 20, 4 (2015), 1052–1094.

[7] Gabriele Bavota and Barbara Russo. 2016. A large-scale empirical study on self-admitted technical debt. In Proceedings
of the 13th International Conference on Mining Software Repositories (MSR 2016). 315–326.

[8] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.

[9] Quang-Cuong Bui, Riccardo Scandariato, and Nicolás E. Díaz Ferreyra. 2022. Vul4J: A Dataset of Reproducible

Java Vulnerabilities Geared Towards the Study of Program Repair Techniques. In Proceedings of the 19th IEEE/ACM
International Conference on Mining Software Repositories (MSR 2022). 464–468.

[10] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: Synthetic Minority

Over-sampling Technique. Journal of Artificial Intelligence Research 16 (2002), 321–357.

[11] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794.

[12] Xin Chen, Dongjin Yu, Xulin Fan, Lin Wang, and Jie Chen. 2022. Multiclass Classification for Self-Admitted Technical

Debt Based on XGBoost. IEEE Transactions on Reliability 71, 3 (2022), 1309–1324.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

34 Nakamura et al.

[13] Zadia Codabux and Byron J. Williams. 2013. Managing technical debt: an industrial case study. In Proceedings of the
4th International Workshop on Managing Technical Debt (MTD 2013). 8–15.

[14] Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2011. Lightweight Transformation and Fact Extraction

with the srcML Toolkit. In Proceedings of the 11th IEEE Working Conference on Source Code Analysis and Manipulation
(SCAM 2011). 173–184.

[15] Hugh Coolican. 2017. Research methods and statistics in psychology. Psychology press.

[16] Ward Cunningham. 1992. The WyCash portfolio management system. In Addendum to the Proceedings on Object-
Oriented Programming Systems, Vol. 4. 29–30.

[17] Everton da S. Maldonado and Emad Shihab. 2015. Detecting and quantifying different types of self-admitted technical

Debt. In Proceedings of the 7th IEEE International Workshop on Managing Technical Debt (MTD 2015). IEEE Computer

Society, 9–15.

[18] Everton da S. Maldonado, Emad Shihab, and Nikolaos Tsantalis. 2017. Using Natural Language Processing to Automat-

ically Detect Self-Admitted Technical Debt. IEEE Transactions on Software Engineering 43, 11 (2017), 1044–1062.

[19] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, André Batista da Silva, and Rodrigo Oliveira Spínola.

2015. A Contextualized Vocabulary Model for identifying technical debt on code comments. In Proceedings of the 7th
IEEE International Workshop on Managing Technical Debt (MTD 2015). 25–32.

[20] Mário André de Freitas Farias, Manoel Gomes de Mendonça Neto, Marcos Kalinowski, and Rodrigo Oliveira Spínola.

2020. Identifying self-admitted technical debt through code comment analysis with a contextualized vocabulary.

Information and Software Technology 121 (2020), 106270.

[21] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional

Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2019). 4171–4186.

[22] Thomas G. Dietterich. 1998. Approximate Statistical Tests for Comparing Supervised Classification LearningAlgorithms.

Neural Computation 10, 7 (1998), 1895–1923.

[23] Moritz Eck, Fabio Palomba, Marco Castelluccio, and Alberto Bacchelli. 2019. Understanding flaky tests: the developer’s

perspective. In Proceedings of the ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/SIGSOFT FSE 2019). 830–840.

[24] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,

Daxin Jiang, and Ming Zhou. 2020. CodeBERT: A Pre-Trained Model for Programming and Natural Languages. In

Findings of the Association for Computational Linguistics: EMNLP 2020. 1536–1547.
[25] Jernej Flisar and Vili Podgorelec. 2019. Identification of Self-Admitted Technical Debt Using Enhanced Feature Selection

Based on Word Embedding. IEEE Access 7 (2019), 106475–106494.
[26] Martin Fowler. 1999. Refactoring - Improving the Design of Existing Code. Addison-Wesley.

[27] Vahid Garousi and Baris Küçük. 2018. Smells in software test code: A survey of knowledge in industry and academia.

Journal of Systems and Software 138 (2018), 52–81.
[28] Israel Gat and John D. Heintz. 2011. From assessment to reduction: how cutter consortium helps rein in millions of

dollars in technical debt. In Proceedings of the 2nd Workshop on Managing Technical Debt (MTD 2011). 24–26.
[29] Robert J Grissom and John J Kim. 2005. Effect sizes for research: A broad practical approach. Lawrence Erlbaum

Associates Publishers.

[30] Zhaoqiang Guo, Shiran Liu, Jinping Liu, Yanhui Li, Lin Chen, Hongmin Lu, Yuming Zhou, and Baowen Xu. 2019. MAT:

A simple yet strong baseline for identifying self-admitted technical debt.

[31] Fatih Gurcan, Gonca Gokce Menekse Dalveren, Nergiz Ercil Cagiltay, Dumitru Roman, and Ahmet Soylu. 2022.

Evolution of Software Testing Strategies and Trends: Semantic Content Analysis of Software Research Corpus of the

Last 40 Years. IEEE Access 10 (2022), 106093–106109.
[32] Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li. 2018. Identifying self-admitted technical debt in open

source projects using text mining. Empirical Software Engineering 23, 1 (2018), 418–451.

[33] Timo Hynninen, Jussi Kasurinen, Antti Knutas, and Ossi Taipale. 2018. Software testing: Survey of the industry

practices. In Proceedings of the 41st International Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO). 1449–1454.

[34] Karen Spärck Jones. 2004. A statistical interpretation of term specificity and its application in retrieval. Journal of
Documentation 60, 5 (2004), 493–502.

[35] Yasutaka Kamei, Everton Maldonado, Emad Shihab, and Naoyasu Ubayashi. 2016. Using analytics to quantify the

interest of self-admitted technical debt. CEUR Workshop Proceedings 1771 (2016), 68–71.
[36] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad Shihab, Ryosuke Sato, and Naoyasu

Ubayashi. 2022. An empirical study on self-admitted technical debt in modern code review. Information and Software
Technology 146 (2022), 106855.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

Understanding Self-Admitted Technical Debt in Test Code: An Empirical Study 35

[37] Yutaro Kashiwa, Kazuki Shimizu, Bin Lin, Gabriele Bavota, Michele Lanza, Yasutaka Kamei, and Naoyasu Ubayashi.

2021. Does Refactoring Break Tests and to What Extent?. In Proceedings of the 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME 2021). 171–182.

[38] Igor Kononenko. 1990. Comparison of inductive and naive Bayesian learning approaches to automatic knowledge

acquisition. Current trends in knowledge acquisition 8 (1990), 190.

[39] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya. 2012. Technical Debt: From Metaphor to Theory and Practice.

IEEE Software 29, 6 (2012), 18–21.
[40] J Richard Landis and Gary G. Koch. 1977. The measurement of observer agreement for categorical data. Biometrics 33,

1 (1977), 159–174.

[41] Jun Li, Lixian Li, Jin Liu, Xiao Yu, Xiao Liu, and Jacky Wai Keung. 2025. Large language model ChatGPT versus small

deep learning models for self-admitted technical debt detection: Why not together? Softw. Pract. Exp. 55, 1 (2025),
3–28.

[42] Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study on technical debt and its management.

Journal of Systems and Software 101 (2015), 193–220.
[43] Zhongxin Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping Li. 2018. SATD detector: a text-mining-based

self-admitted technical debt detection tool. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceedings (ICSE 2018). 9–12.

[44] Rungroj Maipradit, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2020. Wait for it: identifying "On-Hold"

self-admitted technical debt. Empirical Software Engineering 25, 5 (2020), 3770–3798.

[45] Salvatore S Mangiafico. 2016. Summary and analysis of extension program evaluation in R. https://rcompanion.org/h

andbook/ (Accessed: 2025-02-01).

[46] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of two random variables is stochastically larger

than the other. The annals of mathematical statistics (1947), 50–60.
[47] Luana Almeida Martins, Heitor A. X. Costa, Márcio Ribeiro, Fabio Palomba, and Ivan Machado. 2023. Automating

Test-Specific Refactoring Mining: A Mixed-Method Investigation. In Proceedings of the 23rd IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2023). 13–24.

[48] Steve McConnell. 2013. Managing Technical Debt. Construx (2013), 1–14.

[49] Pengyu Nie, Rahul Banerjee, Junyi Jessy Li, Raymond J. Mooney, and Milos Gligoric. 2023. Learning Deep Semantics

for Test Completion. In Proceedings of the 45th IEEE/ACM International Conference on Software Engineering (ICSE 2023).
2111–2123.

[50] Ariadi Nugroho, Joost Visser, and Tobias Kuipers. 2011. An empirical model of technical debt and interest. In Proceedings
of the 2nd Workshop on Managing Technical Debt (MTD 2011). 1–8.

[51] Fabio Palomba, Andy Zaidman, Rocco Oliveto, and Andrea De Lucia. 2017. An exploratory study on the relationship

between changes and refactoring. In Proceedings of the 25th International Conference on Program Comprehension (ICPC
2017). 176–185.

[52] Anthony Peruma, Khalid Almalki, Christian D. Newman, Mohamed Wiem Mkaouer, Ali Ouni, and Fabio Palomba.

2020. tsDetect: an open source test smells detection tool. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020). 1650–1654.

[53] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted Technical Debt. In Proceedings of the
30th IEEE International Conference on Software Maintenance and Evolution (ICSME 2014). 91–100.

[54] Leevi Rantala, Mika Mäntylä, and Valentina Lenarduzzi. 2024. Keyword-labeled self-admitted technical debt and static

code analysis have significant relationship but limited overlap. Software Quality Journal 32, 2 (2024), 391–429.
[55] Leevi Rantala, Mika Mäntylä, and David Lo. 2020. Prevalence, Contents and Automatic Detection of KL-SATD. In

Proceedings of the 46th Euromicro Conference on Software Engineering and Advanced Applications (SEAA 2020). 385–388.
[56] Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang, and John Grundy. 2019. Neural Network-based

Detection of Self-Admitted Technical Debt: From Performance to Explainability. ACM Transactions on Software
Engineering and Methodology 28, 3 (2019), 15.

[57] Ahmed F. Sabbah and Abualsoud A. Hanani. 2023. Self-admitted technical debt classification using natural language

processing word embeddings. International Journal of Electrical and Computer Engineering (IJECE) 13, 2 (2023),

2142–2155.

[58] Irene Sala, Antonela Tommasel, and Francesca Arcelli Fontana. 2021. DebtHunter: AMachine Learning-based Approach

for Detecting Self-Admitted Technical Debt. In Proceedings of the 25th International Conference on Evaluation and
Assessment in Software Engineering (EASE 2021). 278–283.

[59] Simone Scalabrino, Mario Linares-Vásquez, Rocco Oliveto, and Denys Poshyvanyk. 2018. A comprehensive model for

code readability. J. Softw. Evol. Process. 30, 6 (2018).
[60] Chris Seiffert, TaghiM. Khoshgoftaar, Jason VanHulse, and Andres Folleco. 2014. An empirical study of the classification

performance of learners on imbalanced and noisy software quality data. Inf. Sci. 259 (2014), 571–595.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

https://rcompanion.org/handbook/
https://rcompanion.org/handbook/

36 Nakamura et al.

[61] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. 2017. House of Cards: Code Smells in Open-Source C#

Repositories. In Proceedings of the 2017 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM 2017). 424–429.

[62] Mohammad Sadegh Sheikhaei, Yuan Tian, Shaowei Wang, and Bowen Xu. 2024. An empirical study on the effectiveness

of large language models for SATD identification and classification. Empirical Software Engineering 29, 6 (2024), 159.

[63] Giancarlo Sierra, Emad Shihab, and Yasutaka Kamei. 2019. A survey of self-admitted technical debt. Journal of Systems
and Software 152 (2019), 70–82.

[64] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André L. M. Santos. 2023. Refactoring Test Smells

With JUnit 5: Why Should Developers Keep Up-to-Date? IEEE Transactions on Software Engineering 49, 3 (2023),

1152–1170.

[65] Davide Spadini, Fabio Palomba, Andy Zaidman, Magiel Bruntink, and Alberto Bacchelli. 2018. On the Relation of Test

Smells to Software Code Quality. In Proceedings of the 2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME 2018). 1–12.

[66] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.

[67] Ronald J Tallarida, Rodney B Murray, Ronald J Tallarida, and Rodney B Murray. 1987. Chi-square test. Manual of
pharmacologic calculations: with computer programs (1987), 140–142.

[68] Chakkrit Tantithamthavorn, Ahmed E. Hassan, and Kenichi Matsumoto. 2020. The Impact of Class Rebalancing

Techniques on the Performance and Interpretation of Defect Prediction Models. IEEE Trans. Software Eng. 46, 11 (2020),
1200–1219.

[69] Igor V. Tetko, David J. Livingstone, and Alexander I. Luik. 1995. Neural network studies, 1. Comparison of overfitting

and overtraining. J. Chem. Inf. Comput. Sci. 35, 5 (1995), 826–833.
[70] Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys

Poshyvanyk. 2016. An empirical investigation into the nature of test smells. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE 2016). 4–15.

[71] Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. 2001. Refactoring Test Code. In Proceedings of
the 2nd international conference on extreme programming and flexible processes in software engineering. 92–95.

[72] V. Vapnik. 1963. Pattern recognition using generalized portrait method. Automation and Remote Control 24 (1963),
774–780.

[73] Carmine Vassallo, Fiorella Zampetti, Daniele Romano, Moritz Beller, Annibale Panichella, Massimiliano Di Penta, and

Andy Zaidman. 2016. Continuous Delivery Practices in a Large Financial Organization. In Proceedings of the 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME 2016). 519–528.

[74] Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. 2016. Examining the Impact of Self-Admitted Technical Debt

on Software Quality. In Proceedings of the IEEE 23rd International Conference on Software Analysis, Evolution and
Reengineering (SANER 2016). 179–188.

[75] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1, 6 (1945), 80–83.

[76] Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. 2007. On Early Stopping in Gradient Descent Learning. Con-
structive Approximation 26 (2007), 289–315.

[77] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn B. Seaman. 2011. Investigating the impact of design debt

on software quality. In Proceedings of the 2nd Workshop on Managing Technical Debt (MTD 2011). 17–23.
[78] Tingwei Zhu, Zhongxin Liu, Tongtong Xu, Ze Tang, Tian Zhang, Minxue Pan, and Xin Xia. 2024. Exploring and

Improving Code Completion for Test Code. In Proceedings of the 32nd IEEE/ACM International Conference on Program
Comprehension (ICPC 2024). 137–148.

Received 10 February 2025; revised 26 August 2025; accepted 8 December 2025

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2025.

	Abstract
	1 Introduction
	2 Related work
	2.1 Self-admitted Technical Debt
	2.2 Issues in Test code
	2.3 Testing-Related SATD

	3 Research Questions
	3.1 Motivating Examples
	3.2 Proposed Research Questions

	4 Methodology
	4.1 Data Collection
	4.2 Data Analysis

	5 Results
	5.1 RQ1: How prevalent is SATD in test code?
	5.2 RQ2: Is SATD in test code correlated with test quality?
	5.3 RQ3: What are the purposes of SATD in test code?
	5.4 RQ4: To what extent can SATD in Test Code be classified automatically?

	6 Discussions
	6.1 Test Smells with Types of Test SATD
	6.2 Lessons Learned
	6.3 Implications

	7 Threats to validity
	8 Conclusion
	Acknowledgments
	References

