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Abstract—Energy consumption in mobile applications is a
key area of software engineering studies, since any advance
could affect billions of devices. Currently, several software-based
energy calculation tools can provide close estimates of the energy
consumed by mobile applications without relying on physical
hardware, offering new opportunities to conduct large-scale
energy studies in mobile devices. In these studies, one key step
of data collection is generating events, since it allows exercising
specific parts of the code and, as a consequence, assessing their
energy consumption. Given the fact that manually generating
events by interacting with applications is time-consuming and
not scalable, large-scale studies often use software-based tools
to automate event generation to profile devices. Existing tools
rely on randomly generated events, which undermines the re-
producibility and generalizability of such studies.

We present AIP (Android Instrumentation Profiler), an al-
ternative to existing software-based event generation tools such
as Monkey. AIP uses instrumented tests as a source of event
generation, which enables the targeting of complex use cases
for energy consumption estimations, as well as the creation of
fully reproducible events and execution traces, while maintaining
the scaling abilities of other state-of-the-art tools. The tool
and demo video can be found on https://github.com/ONourry/
AndroidInstrumentationProfiler.

I. INTRODUCTION

According to consumer data statistics [1], the number of
mobile device users worldwide went from ∼3.6 billion in
2016 to over 6 billion in 2021 with no indications of such an
increasing trend slowing down in the future. The popularity of
mobile devices also boosted the market for mobile applications
(or simply, apps), that is nowadays valued over $100 billion
per year. These apps, besides facing all classic challenges of
modern software development, must deal with one specific
hardware restriction typical of mobile devices: the limited
battery life. This results in the need for minimizing the energy
consumption of mobile apps, which has been investigated by
researchers through cataloging common energy bugs in mobile
apps [2], [3], [4], [5], [6] and energy-greedy APIs [7], [8].

When conducting studies measuring the energy consump-
tion of mobile apps, there are two possible alternatives. First,
relying on hardware-based measurement approaches such as
GreenMiner [9], [10]. Physical tools can precisely measure en-
ergy consumption but most of them require an external power
meter and customizations of the mobile devices. In recent
years, software-based approaches have been proposed, such as
the PETrA technique presented by Di Nucci et al. [11], which
uses the Android profiling tool to collect events/interactions
data to estimate the energy usage of an application. While

events are happening on the device, the profiling tool records
every function call and outputs complete execution trace logs
of every method executed when the application was running.
PETrA can generate events on the device to trigger the source
code and estimate the amount of joules consumed by each
function, with a reported estimation error of ±4% as compared
to hardware measurements [11].

Software-based solutions such as PETrA, while sacrificing
some of the precision of energy consumption assessment,
enable large-scale studies that would be impossible using
hardware-based measurement. However, they still suffer from
a major limitation posing a tradeoff between the scale of
the conducted studies and their replicability. Indeed, PETrA
only supports “Random Operations” or “Manual Operations”
to exercise the application during the profiling process. The
“Random Operations”, which are generated using the Monkey
tool provided by Android, make it difficult to reproduce the
results of an experiment and the targeting of specific code
components of interest. Whereas, “Manual Operations” and
manual scenarios such as Monkeyrunner scripts result in
replicable runs but make it difficult to scale out studies. Thus,
both these approaches are not suitable for replicable studies
involving measurements across thousands of revisions.

We present the Android Instrumentation Profiler (AIP), a
scalable and reproducible profiling automation tool to generate
execution trace logs. AIP approximates the energy consump-
tion during common scenarios provided by instrumentation
tests, which are UI tests employed in Android application
development. AIP automatically starts and finishes the pro-
filing process by detecting the start and the end of the
instrumented tests. Using our approach in combination with
PETrA, it is possible to achieve reproducible and scalable
energy consumption studies of mobile apps at the function-
level granularity while also having the ability to target specific
code components and use case scenarios. AIP is available
at https://github.com/ONourry/AndroidInstrumentationProfiler
together with installation and execution instructions.

II. BACKGROUND

The Android Tools. The Android Profiler [12] along with
Systrace [13] and Batterystats [14] are used in conjunction to
collect real-time data about the usage of the CPU, memory,
network, and battery resources. These Android tools do not
directly measure the energy consumption of applications, but
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Fig. 1: Architecture of AIP.

allow the collection of data used by energy measurement
models to approximate the energy usage of an application.

Instrumented Tests. Instrumented tests are tests that can
run on a hardware device or an emulator [15] exploiting a
special test execution environment which provides easy access
to an application’s context and Android framework APIs.
Developers can manipulate the application under test from the
test code. Instrumented tests are often used to automate user
interactions. These tests are built into a separate APK (test
APK) from the application APK (main APK). To detect if
a repository has instrumented tests, developers just need to
check whether the specific androidTest directory (located at
module-name/src/androidTest/) contains test files.

There are multiple libraries supported by Android to write
instrumented tests, such as Espresso [16], UI Automator [17]
and Compose [18]. All these libraries provide a variety of
APIs to test an application by interacting with its views and
widgets. This makes instrumentation tests easier to implement
and maintain compared to hardcoded input-by-input scripts
such as those written using monkeyrunner [19]. The latter
are unlikely to be maintained over time since they are often
tailored to a specific app revision or specific coordinates of
UI elements on the screen and are therefore very sensitive
to UI changes which tend to be part of an app’s evolution
process. On the contrary, the flexibility offered by libraries
such as Espresso which can detect and interact with an app’s
views directly rather than by using a coordinate system makes
instrumented tests more robust against UI changes and easier
to maintain and improve over time.

Because instrumented tests always generate the same events,
they can consistently reproduce execution traces across runs
for an application. AIP uses instrumented tests to invoke the
methods of interest and investigate the energy consumption of
these methods. Having access to the source code of instru-
mented tests also helps us target specific code components or
estimate the energy consumption of complete use cases.

III. THE AIP TOOL

AIP - Android Instrumentation Profiler, is a tool designed
to combine the ability to target specific code components, gen-
erate consistent execution traces at the method level, and scale
for large MSR-style studies on mobile devices. AIP enables
scalability in studies aimed at measuring the energy usage of

source code involved in complex use cases or requiring an
interaction with multiple UI elements.

A. Relationship between AIP and PETrA

PETrA currently offers the option to use Android Monkey or
monkeyrunner scripts to generate events to collect stacktraces,
battery and CPU logs. It then uses an algorithm to estimate
the number of joules used based on the previously collected
data. However, the events generated by Monkey are random,
which makes it hard to estimate the energy consumption of
specific parts of code. Monkeyrunner, instead, is very sensitive
to UI changes, making it difficult to scale over the historical
revisions of an application. Therefore, we designed AIP as
an alternative way to generate reproducible events which can
target specific parts of the source code while maintaining the
ability to scale over historical revisions.

B. Architecture

Fig. 1 illustrates the architecture of AIP and the interaction
of its components. AIP features two main components: 1) APK
Generator, and 2) Energy Data Generator. A Result Generator
component such as PETrA’s energy consumption model can
be integrated in AIP to estimate the energy usage. The APK
Generator runs on the local server, which is responsible for
customizing original APKs to our needs. The customized
APKs will then be installed on the mobile device. The Energy
Data Generator executes the whole profiling process and
generates the energy data, which will be pulled from the
mobile device to the server and further processed by the Result
Generator to produce the final energy consumption report.

C. APK Generator

A source code repository must be provided to the APK
Generator on the local server 1 . We only focus on applica-
tions with instrumented tests since we rely on them to exercise
the source code for profiling. AIP uses the Android Profiler
to get energy consumption data. However, the profiler cannot
be executed directly from the applications. Instead, it requires
instructions from the server to start/stop the profiling process.
As we aim to automate the profiling process, we need to
customize the APKs (mainly test APKs) to notify the server
when to send such instructions. To do so, the APK Generator
integrates a custom test runner into the original test APKs 2 .



The detailed communication process can be found in Sec-
tion III-D.

Meanwhile, it updates the gradle build files so
that the custom runner is used instead of the default
AndroidJUnitRunner while running the instrumented
tests 3 . The command “gradle assemble
assembleAndroidTest” is executed to build the
main APK and the customized test APK 4 . Both APKs are
installed on the mobile device 5 .

D. Energy Data Generator

Before profiling, the Energy Data Generator first runs an
AST parser on the source files containing the instrumentation
code in the androidTest folder to extract every instrumentation
test method signature. The reason behind this process is that it
allows AIP to generate a set of output files for each test case
profiled to avoid creating overly large files.

After extracting the method signatures, the Energy Data
Generator resets the battery data: the consumed energy in
joules is reset to 0 6 . Then, the instrumented tests and
the systrace tool are executed 7 . Systrace [13] is a utility
used for analyzing the application performance by collecting
execution times of application processes and other Android
system processes. Meanwhile, the server is alerted that the
tests will be executed soon.

Choosing when to automatically start the profiler is chal-
lenging. In practice, the profiling process can only start after
the profiled process (i.e., an instrumentation test) is started,
otherwise an error of no process will be given. The profiler
however needs time to start profiling the instrumentation tests.
Due to this delay, starting the instrumentation before the
profiler results in a small period during which the instrumented
tests are running but the profiler has not yet started profiling.
Every method call during that period are therefore not profiled
and missing from the execution trace.

To address this issue, the Energy Data Generator monitors
the status of the instrumentation on the device; whenever the
test process is created on the device, the test execution is
temporarily suspended to give time to the profiler to start the
profiling process. Android Debug Bridge (adb), a command-
line tool which allows AIP to communicate directly with the
android device running the tests, is used to start the profiler
8 . After five seconds, we resume the test execution so that

the profiler can record every method executed on the device
9 . During the execution, the instrumented tests generate a

separate test process from the main application process, and
the test process is the one to be profiled.

In our experiments we found that if the profiling stops after
the profiled process is killed, we often cannot get the data from
the profiler. Thus, the profiling must stop before killing the
profiled process. Once the tests are completed, the Energy Data
Generator temporarily suspends the test process and notifies
the server that the profiler can be stopped. In this way, the
profiler can generate the complete execution trace. After each
instrumented test is completed, the server stops the profiler via
adb and the test process is killed on the mobile device 10 .

The execution of each instrumented test results in three log
files 11 which are pulled from the mobile device: trace logs,
systrace, and batterystats.

Trace logs contains the entire execution trace showing every
method call executed during the instrumentation process. Sys-
trace contains all information related to the CPU activity (i.e.,
idle/active state). Finally, batterystats contains all information
related to the battery usage of the mobile device during
the instrumentation. These output files can then be provided
to a Result Generator such as PETrA’s energy consumption
algorithm to get fine-grained energy approximations at the
method level.

IV. AIP USAGE INSTRUCTIONS

We provide basic instructions to run AIP. The
setup details and required template files can be found
in the GitHub repository https://github.com/ONourry/
AndroidInstrumentationProfiler.

Environment setup. The current AIP is only for Android
devices. USB debugging must be enabled on the device in
the developer menu and the Android debug bridge (adb) must
successfully detect the plugged device. The source code of the
subject app to analyze must be available on the server to which
the Android device is connected. A historical analysis of the
energy consumption of an app implies the availability of the
code in the form of a git repository. A Java environment must
also be installed on the server with the proper environment
variables set in PATH to invoke adb functions and build
commands. As described in Section VI, depending on the
build systems and dependencies an application uses (or used
in old snapshots), the JDK, SDK and gradle versions running
on the computer may need to be modified. Additional details
are available on the GitHub repository.

Running AIP. AIP has one main launcher which executes
both the APK Generator and the Energy Data Generator.
The input arguments for the launcher are parsed from a
configuration file that must be filled prior to executing it. Once
the launcher is executed, AIP will first extract the instrumented
test signatures from the subject app using the AST parser
introduced in Section III. The APK Generator will then update
the custom test runner with the app’s corresponding package
name, copy the custom runner into the app’s androidTest folder
and update the gradle build file. The APK Generator will
then launch the gradle build whose logs will be displayed in
the console. Once the app is successfully built, the test and
main APKs will both be installed on the mobile device. After
installing the APKs, the main launcher will call the Energy
Data Generator which will coordinate the execution of the
instrumentation process, the systrace tool and the Android
profiler. Throughout the instrumentation process execution,
AIP will log which tests are being profiled, when each tool
starts and stops, and when the data files are pulled from the
device. Whenever an instrumented test completes, the Energy
Data Generator will store the data files for each test case in a
directory corresponding to the test case signature.



V. PRELIMINARY EVALUATION

To evaluate the scalability of AIP, we profiled 401 different
APKs from the historical revisions of the open source mobile
application “KISS” [20] which can be built using gradle.
The average time to profile a single APK was ∼7 minutes.
However, the execution time of AIP varies based on how
extensive the instrumentation tests of the subject apps are.

While experimenting on such a dataset of APKs, we found
that the number of profiled methods tends to decrease when
AIP is run continuously on several APKs. This means, for
example, that running n times AIP on the same APKi,
we observe that x methods are profiled in each run. Then,
by performing additional n runs, such a number x slightly
decreases, resulting in the loss of a few data points. Reasons
for this behavior are discussed in Section VI. We anticipate,
however, that by rebooting the device when such a trend is
observed, such variations can be minimized.
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Fig. 2: Number of profiled methods by test case

To test the reproducibility of studies run through AIP, we
took a specific APK from the KISS app and profiled it ten
times looking at the number of methods profiled during each
run for each of the 16 instrumentation tests present in the APK.
A stable number of executed methods would imply stability
in the data collection process. AIP generated very similar
results across runs with some minor inconsistencies. Upon
manual inspection, the latter was due to methods which were
not consistently profiled since their execution is influenced by
the application’s context (e.g., data handling functions whose
execution varies from one run to another due to the processing
time of specific queries).

Fig. 2 shows the number of methods profiled (y-axis) for
each of the 16 test cases (x-axis) across the ten runs. During
our manual result inspection, we also found 9 instances where
the profiler was unable to properly profile a test case (out of
the total 160 executed cases). These events seem to happen at
random times and for no specific type of instrumentation test.

Comparison with alternatives. We developed AIP to gen-
erate reproducible results and have the ability to target source
code for measurements while also being scalable. To highlight
the need for a tool like AIP, we selected a real use case where
a developer may want to measure the energy consumption of
their application.

We compared AIP with Monkey: PETrA’s current option
for scalable executions. In this experiment, we used the
Android application AnyMemo [21], with which users can
design and create custom flash cards to memorize words,
definitions and pictures. More specifically, we measured the
energy consumption of “creating a new card”, which is one
of the most common use cases for this application. Since
Monkey generates random events, we want to see if Monkey
can navigate through multiple user interfaces to access the card
creation menu and create a new card. For this experiment, we
let Monkey generate over 30,000 interactions and then counted
how many times Monkey was able to create a new flash card.

As a result, we found that Monkey was unable to create a
single new card. Unlike directed executions using scripts or
instrumented test code, random events were unable to trigger
a common use case for the application. Although simple, this
experiment highlights the need for a tool like AIP that can both
scale and target specific source code. Although Monkey may at
some point be able to trigger the desired code, random events
make it unreliable for use cases such as the one shown in
this experiment: AIP offers valuable features to target energy
measurements of specific code components and conduct large
scale energy studies in mobile devices.

VI. LIMITATIONS

Currently, AIP is subject to technical limitations.
Speed. The instrumentation process is noticeably slower

when executed by AIP than manually. The main causes for
the slowdown are the profiler monitoring the method calls on
the device as well as AIP generating and pulling the execution
logs after each test to avoid bloating the device’s memory.

Accuracy. As discussed, AIP is susceptible to flaky behavior
due to the profiler being able to profile certain methods in
some runs but not in others. As described in Section V, there
are also instances where tests are randomly not profiled. While
experimenting with AIP, we have also observed test cases that
could not be profiled on any runs.

Emulators. AIP currently only supports physical devices.

VII. CONCLUSION

We presented AIP, a tool to trigger the source code of
mobile apps for energy measurement studies. AIP is able to
target source code and generate stable results across multiple
runs and revisions which opens the door to reproducible large-
scale energy measurement studies. Being software-based, AIP
can be easily integrated with external tools such as git to run
on multiple revisions of an app’s history. We expect AIP to
offer new possibilities for researchers conducting large scale
energy evolution studies.
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