
On the Evolution of Unused Dependencies
in Java Project Releases: An Empirical Study

Nabhan Suwanachote∗, Yagut Shakizada∗, Yutaro Kashiwa∗, Bin Lin†, Hajimu Iida∗
∗Nara Institute of Science and Technology, Japan

†Hangzhou Dianzi University, China

Abstract—Modern software development heavily relies on
third-party dependencies to reduce workload and improve de-
veloper productivity. Given the vast number of dependencies
available and the ease of including them in projects, some intro-
duced dependencies are never used, leading to bloated software,
longer build times, and increased network bandwidth usage.
While several previous studies have examined the prevalence of
unused dependencies and their impact on security, it remains
unclear how these dependencies are introduced and removed
in software projects. This study aims to answer this question
through an empirical study involving 3,020 release versions of
417 Java projects. Our analysis shows that unused packages are
common in most projects (52% of projects), but few releases
(9%) introduce new unused dependencies. Among those resolved
unused dependencies, 59% of them were removed and 41% were
used in later versions. Our findings highlight that not all unused
dependencies should be removed in practice.

Index Terms—Dependencies, Packages, Empirical Study

I. INTRODUCTION

In modern software projects, developers often adopt third-
party dependencies to accelerate development and reduce
costs [1]–[3]. A recent study reports that 96% of commercial
codebases reuse open-source software and contain an average
of 526 open-source components [4]. The emergence of build
systems such as Maven and npm eases the adoption of depen-
dencies, as developers can include or change dependencies
by modifying only a few lines of build files. The number
of third-party libraries available is also vast. For example,
658,078 libraries with 14,459,139 releases are provided on
Maven Central Repository [5].

Given the easy access to third-party dependencies, many de-
pendencies are installed but remain unused in repositories [6].
Recent studies have reported that these unused dependencies
not only occupy storage space and consume network band-
width in local or CI environments, but also pose security
vulnerabilities [7] and account for up to 55.9% of CI build
time [8]. Additionally, we observe many cases where develop-
ers attempt to remove unused dependencies due to bulky JAR
files [9] [10] and license incompatibilities [11]. For exam-
ple, developers in the snowflakedb/snowflake-jdbc
project discussed the fact that unused packages excessively
increased the size, violating their distribution limitations [10].

Existing studies on unused dependencies mainly focus on
the prevalence of unused libraries and their impact on build
times and security. Some studies have investigated which
commits introduce or remove unused dependencies [8], [12],

but the granularity of the analysis remains coarse. It is still
unclear when unused dependencies are introduced and how
long they persist. Understanding how unused dependencies
evolve helps researchers and practitioners propose strategies
to manage these dependencies.

This study aims to reveal the lifecycle of unused depen-
dencies. We collected and analyzed 15,738 dependencies con-
tained in 3,020 release versions of 417 projects. As a result, we
identified 3,074 unused dependencies and found that 52% of
the projects contained unused dependencies, with an average
of 14.2 and a median of 5 unused dependencies per project,
indicating that half of the studied projects are not maintained
adequately. Furthermore, those unused dependencies which
were resolved in the end persisted in the software for a median
of two versions, with 59% being removed and 41% being
used in later versions. This result highlights the caution needed
when designing tools to clean the “bloated software”.

Replication Package: To facilitate replication studies and
future extensions, the data used in our work is publicly
available in the replication package.1

II. RESEARCH QUESTIONS

The goal of this study is to reveal how unused dependencies
evolve. More specifically, we formulate the following research
questions (RQs).

RQ1: How are unused dependencies introduced in
software project releases? Several studies [6], [13] have
investigated unused dependencies in software repositories.
However, these studies normally consider all the dependencies
declared in pom.xml files and it is unclear how many unused
dependencies are included in the software releases. Moreover,
it also remains unknown when these unused dependencies
are introduced. This RQ aims to address these doubts by
inspecting the prevalence and the introduction time of the
unused dependencies.

RQ2: How are unused dependencies handled by devel-
opers? Previous studies [6], [12], [14] analyzed how many un-
used dependencies are introduced and their impact on security.
However, to the best of our knowledge, no studies have exam-
ined how long unused dependencies persist and whether they
are handled by developers. Studying how they are resolved
in practice could provide developers with valuable insights on
how to deal with unused dependencies in codebases.

1https://github.com/nabhan-au/java-dependency-analyzer

https://github.com/nabhan-au/java-dependency-analyzer

Context Selection (CS)

Filter out projects with
broken pom.xml  

or no release tags

CS5

 Dataset

417
projects

rev x

Dep A

Dep B

8,837
projects

Filter out non-Java and non-
Maven projects

CS4

Retrive repository data 
(Remove inaccessible 

repositories)

CS3

Random sampling

CS2

Filter out projects without
dependencies and Git

URLs

CS1
1,600

projects
10,000
projects

316,001
projects

658,078
projects

DA2

rev x-1

Dep A

rev x

Dep A
Dep B

Find the removals  
of unused dependencies

(RQ2)

DA1

rev x-1

Dep A

rev x

Dep A
Dep B

Find the introduction of
unused dependencies

(RQ1)

ULI3

Search unused
dependencies

ULI2

Checkout the source code
and build AST

var const
i 5

while
less

ULI1

Identify the revision  
of each release

ver1

Fig. 1: Overview of this study

III. STUDY DESIGN

A. Context Selection
To retrieve the dependency usage information, we adopt

Jaime et al.’s dataset (version “2024-08-30 & metrics”) [5]
[15], which provides dependency graphs between libraries
that use Maven. The dataset contains 658,078 libraries and
their dependencies, which are collected from Maven Central
Repositories using Globlin Miner [16].

We performed two filtering processes to eliminate the
dependencies that we cannot analyze. First, we filtered out
the projects that do not use third-party dependencies (i.e., no
dependencies defined in pom.xml). Second, we excluded the
projects whose pom.xml do not contain Git URLs as our
analysis requires visiting different versions of source code.
These filters removed 342,077 projects and 316,001 remained.

We then use GitHub API to double check whether the
extracted projects primarily use Java and Maven. Given the
current GitHub API rate limit (5,000 API calls per hour)2,
it is impractical to check all 316,001 projects. Therefore, we
randomly sampled 10,000 projects and for each project, we
examined whether the main programming language is Java
and the repository contains pom.xml (i.e., using Maven).3

1,163 projects were excluded due to their inaccessibility, 5,953
projects for not using Java as their primary programming
language, and 1,284 projects for not utilizing Maven. This
process led to 1,600 projects that fit into our criteria.

Finally, we excluded projects whose pom.xml files are
broken, such as those with unresolved dependencies or invalid
syntax (265 projects) and projects that do not have all the
release tags corresponding to the releases in the dataset (918
projects), so that for the studied projects we can check out the
specific revisions of source code corresponding to release ver-
sions. Specifically, we identified release tags of their GitHub
repositories that match the version or include the version (e.g.,
v1.1) specified in Jaime et al.’s dataset. If there are multiple
candidates, we use the one that has the shortest tag name.
This approach identified 68.9 % of versions (i.e., 16,439) out
of 23,587 versions in our dataset. In the end, we obtained 417
projects that have all the release tags. Table I presents the
statistics of the studied projects.

2https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api
3Note that Maven Central Repository allows using of other build tools such

as Gradle and so their main language is not only Java.

TABLE I: Statistics of the studied repositories

Min Median Mean Max

Versions 1.0 4.0 7.2 157
Stars 0 2.0 131.6 10,548
Commits 1.0 61 1204.6 63,767
Average Dependencies4 0.3 3.0 4.5 51.8

B. Unused Dependency Identification

To identify unused dependencies in the 417 projects, we
first retrieve their source code of each version through the
Git link declared in the pom.xml files. We then check out
the revision of the source code that is linked to the release
tag. Next, we built the abstract syntax tree (AST) of the
source code using JavaParser5 to identify the libraries that are
imported (including wildcard imports) and used in the source
code. Finally, we identified used/unused dependencies declared
in the pom.xml by checking if the path and class names
of imports (e.g.,import a.b.c;) are the same as those of
dependencies, i.e., Jar files (e.g.,a/b/c.class).

Note that we also included older versions not present in
Maven Central Repository (i.e., Jaime et al.’s dataset), if they
could be identified through GitHub release tags. Also, we
only analyzed the dependencies for production and excluded
dependencies for other processes such as testing, as one of our
motivations is to understand how many unused dependencies
will end up in the distributions such as JAR files. Moreover,
we only studied the direct dependencies (i.e., dependencies
declared in the POM files) instead of transitive dependencies
(i.e., other dependencies contained in the dependencies we
studied) and inherited dependencies (i.e., dependencies de-
clared in the parent POM files), which are both indirectly
included in the product, as we focus on how developers
introduce and handle unused dependencies.

It is worth mentioning that we detect not only (i) the cases
where the dependencies declared in the pom.xml files are
not used in the source code but also (ii) the cases where the
declared dependencies are imported in the source code but are
not used like in this case [17]. These cases cannot be detected
by the official Apache Maven Dependency Plugin.6

4Note that the ‘Average Dependencies’ represents the average number of
dependencies across all releases.

5https://javaparser.org
6https://maven.apache.org/plugins/maven-dependency-plugin/

https://docs.github.com/en/rest/using-the-rest-api/rate-limits-for-the-rest-api
https://javaparser.org
https://maven.apache.org/plugins/maven-dependency-plugin/

C. Data Analysis

1) RQ1: To answer RQ1, we first measure the number of
unused dependencies included in each version of the software
project. However, the number of used dependencies varies
significantly across projects and versions. To mitigate the bias
introduced by this fact, we also calculate the ratio of unused
dependencies to all the dependencies declared in pom.xml.

Additionally, we identify the number of unused dependen-
cies newly introduced in each version release. To identify these
introductions, we compare the list of unused dependencies
in every two consecutive versions of a project. Specifically,
we count instances where an unused dependency is absent
in the previous version but appears in the current version.
Furthermore, we classified these unused dependencies into two
types based on how they are introduced:

• No longer used: The unused dependencies were used
in the previous version but stopped being used in the
subsequent versions.

• Introduced but not used: The unused dependencies were
declared in pom.xml but never used in the next version.

2) RQ2: We investigate how the unused dependencies are
handled after they are introduced. We categorize the unused
dependencies into the following three types:

• Remaining unused: The dependency is still unused as of
the latest revision.

• Used later: The dependency is previously unused but
utilized in subsequent versions.

• Removed later: The dependency was initially unused and
removed in subsequent versions.

For the later used and deleted cases (i.e., the second and
third categories), we measure the time and version differences
until the dependency is either utilized or removed.

IV. RESULTS

A. RQ1 (Introduction of unused dependencies)

We identified a total of 3,074 unused dependencies in
3,020 release versions of 417 projects. The average number
of unused dependencies per version is 1.0, with the highest
number being 13. The average ratio of unused dependencies is
16.4% of the total dependencies. However, the median number
and ratio of unused dependencies are both 0.0, indicating that
most of the releases do not contain unused dependencies while
non-negligible numbers of unused dependencies are included
in software projects.

We also investigated in which form these unused dependen-
cies exist in the projects and found that only 21 out of 3,074
unused dependencies are imported but not used. This shows
that most projects remove unnecessary import statements in
the source code for releases, leaving only the declarations of
unused dependencies in the pom.xml files.

Next, we examined when dependencies become unused.
Table II shows the number of unused dependencies introduced
in each release. We identified 538 introductions of unused de-
pendencies, which are distributed across 9.3% of the releases.
Of these introductions, 94.4% (i.e., 508) are due to adding

TABLE II: Introductions of unused dependencies

Distribution by version

Total Min Median Mean Max

All Introductions 538 0 0 0.18 13
- No longer used 30 0 0 0.01 2
- Introduced but not used 508 0 0 0.17 13

dependencies without using them in the source code, and 5.6%
(i.e., 30) are due to the removal of source code while the
pom.xml retains the dependencies. The median size of the
relevant JAR files that are unnecessarily downloaded due to
declaring an unused dependency is 1.9 MB.

We also investigated the extent to which projects experi-
enced releasing products with unused dependencies. We found
that 52.0% of projects released at least one version with unused
packages. Interestingly, 79.9% of unused dependencies are
introduced within the first year of their development.

Takeaway: While in most cases software releases do not
contain unused dependencies, it is not uncommon that some
still escape the attention of developers. Some automatic tools
could be proposed to detect such cases.

RQ1: 52.0 % of projects experienced releasing at least one
version of their products that have unused dependencies but
most of the versions do not have unused dependencies.

B. RQ2 (Persistence of unused dependencies)

Out of 538 introductions of unused dependencies, we ob-
served 410 dependencies (i.e., 76.2%) remaining unused as of
November 2024. Of the resolved unused dependencies (i.e., the
remaining 128 unused dependencies), 75 were removed and 53
were later used. This means that 59% of unused dependencies
are removed instead of being used in the source code.

We then investigated the number of days and versions until
the introduced unused dependencies become used or deleted.
Figure 2 shows the distributions of the days and versions. As a
result, a median of 210.6 days is taken until the dependencies
are resolved (i.e., used or removed). Specifically, 208.4 days
are spent until removal and 256.0 days until being used. The
Mann–Whitney U test [18] (α=0.05), a non-parametric test,
detected no statistically significant difference between both
types of resolved dependencies in duration (p-value: 0.84).

As for the versions, a median of two versions is needed until
the dependencies are either used or removed. Applying the
Mann–Whitney U test, we observed no statistically significant
difference between both types of resolved dependencies in
versions (p-value: 0.93).

Takeaway: developers should remain cautious when apply
tools to automatically remove unused packages as around 40%
of them will be needed later.

RQ2: Out of resolved unused packages, 59% of them are
removed instead of being used in the source code. They
remain for a median of two versions.

Removed later Used later
0

500

1000

1500

2000

2500

3000

Da
ys

(a) Days of unused duration

Removed later Used later
0

10

20

30

40

50

Ve
rs

io
ns

(b) Versions where each unused dependency exists

Fig. 2: Number of days and versions until unused dependencies are resolved

V. THREATS TO VALIDITY

Threats to internal validity concern the factors we did not
consider that might impact the results. We needed to identify
the revision (i.e., SHA) of each version by associating their
release tags on GitHub with the versions recorded in the
dataset. This process is done through the automatic way, and
we did not perform extra checks on whether these versions
are exactly identical. To prevent inconsistencies between the
acutal source code and the dataset, we performed our analysis
based on pom.xml files on GitHub.

Threats to construct validity concern the relation between
theory and observation. We analyzed production code (i.e.,
not test code) to identify unused dependencies declared in
pom.xml files. However, we did not consider whether the
source code is indeed used in the end product (e.g., several
dependencies might be used only for prototypes or experimen-
tal development). Thus, the number of unused dependencies
for end products might be higher than what we reported.

Threats to external validity concern the generalizability of
our findings. This study uses 417 projects that are randomly
sampled from Maven Central Repository. However, it is un-
clear whether the result would change when it comes to
projects which are not published on Maven Central Repository,
such as proprietary and closed-source software.

VI. RELATED WORK

This section introduces related work that focuses on un-
used dependencies from various perspectives across different
software ecosystems.

Weeraddana et al. [8] analyzed Continuous Integration (CI)
waste caused by dependencies. Their results reveal that unused
dependencies waste is 55.9% of dependency-update-associated
CI build time. Moreover, projects which are the most affected
by CI waste spend a considerable portion, 85.5% of their
free build minutes on unused dependency commits such as
updating dependency specifications (i.e., package.json).

Soto-Valero et al. [6] investigated bloated dependencies (i.e.,
unused dependencies) in the Maven ecosystem. They analyzed
the bytecode of 9,639 client artifacts and their 723,444 depen-
dencies resolved by Maven. Their results show that 75.1% of
dependencies are bloated (2.7% are direct, 15.4% are inherited
from parent POMs, and 57% are transitive dependencies).

Cao et al. [12] studied dependency smells, missing depen-
dencies, and bloated dependencies in Python projects. They
found that 75% of bloated dependencies are introduced into the
projects when they are added to configuration files. Besides,
bloated dependencies are often never imported in source code,
and 85.1% of bloated dependencies are removed by just
removing dependency declarations from configuration files.

Harrand et al. [13] conducted a systematic large-scale anal-
ysis of 2,169,273 Maven client - API relations between 5,225
library versions of 94 most popular libraries to study client-
API usages. Their findings indicate that 41.1% (892,167) of
the studied dependencies declared in the clients’ pom.xml files
become unused as they are not translated into API usage at
the bytecode level.

Jafari et al. [19] conducted an empirical study on de-
pendency smells using a dataset of 1,146 active JavaScript
projects. In their study, they found that unused dependen-
cies result in dependency smells and unnecessarily bloat the
package.json file.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we analyzed 3,020 versions of 417 Java
projects to understand the evolution of unused dependen-
cies. More specifically, we investigated when these unused
dependencies are introduced and how long they persist. Our
results show that unused dependencies are common in software
projects. While most of the release versions do not contain
unused dependencies, 52.0% of projects experienced unused
dependencies at some point. As for the resolved unused
packages, they do not remain for a long time, and 59% of
them are simply removed instead of being used later.

Our future work include conducting a finer-grained analysis
at the commit level to reveal the role unused dependencies
play during software development. Moreover, we would like
to propose approaches to predict the unused dependencies.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support of JSPS for
the KAKENHI grants (JP21H03416, JP24K02921), the Bilat-
eral Program grant (JPJSBP120239929), as well as JST for
the PRESTO grant (JPMJPR22P3), the ASPIRE grant (JPM-
JAP2415), and the AIP Accelerated Program (JPMJCR25U7).

REFERENCES

[1] V. R. Basili, L. C. Briand, and W. L. Melo, “How reuse influences
productivity in object-oriented systems,” Communications of the ACM,
vol. 39, no. 10, pp. 104–116, 1996.

[2] E. R. Murphy-Hill, C. Jaspan, C. Sadowski, D. C. Shepherd, M. Phillips,
C. Winter, A. Knight, E. K. Smith, and M. Jorde, “What predicts
software developers’ productivity?” IEEE Transactions on Software
Engineering (TSE), vol. 47, no. 3, pp. 582–594, 2021.

[3] S. Wagner and E. R. Murphy-Hill, Factors That Influence Productivity:
A Checklist. Apress, 2019, pp. 69–84.

[4] Blackduck, “2024 open source security and risk analysis report,” https:
//www.blackduck.com/blog/open-source- trends-ossra- report.html,
February 27th, 2024, accessed: December 1st, 2024.

[5] D. Jaime, J. El Haddad, and P. Poizat, “Navigating and exploring
software dependency graphs using goblin,” in Proceedings of the In-
ternational Conference on Mining Software Repositories (MSR 2025),
2025.

[6] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, “A com-
prehensive study of bloated dependencies in the maven ecosystem,”
Empirical Software Engineering (EMSE), vol. 26, no. 3, p. 45, 2021.

[7] A. Gkortzis, D. Feitosa, and D. Spinellis, “A double-edged sword?
software reuse and potential security vulnerabilities,” in Proceedings
of the 18th International Conference on Software and Systems Reuse
(ICSR 2019), vol. 11602, 2019, pp. 187–203.

[8] N. R. Weeraddana, M. Alfadel, and S. McIntosh, “Dependency-induced
waste in continuous integration: An empirical study of unused de-
pendencies in the npm ecosystem,” in Proceedings of the 2024 ACM
International Conference on the Foundations of Software Engineering
(FSE 2024), 2024, pp. 2632–2655.

[9] smallrye, “smallrye-mutiny,” https://github.com/smallrye/smallrye-mut
iny/issues/1577, April 12th,2024, accessed: December 1st, 2024.

[10] snowflakedb, “snowflake-jdbc,” https://github.com/snowflakedb/snowfla
ke-jdbc/issues/1622, January 30th, 2024, accessed: December 1st, 2024.

[11] devonfw, “Ideasy,” https://github.com/devonfw/IDEasy/issues/685,
October 10th, 2024, accessed: December 1st, 2024.

[12] Y. Cao, L. Chen, W. Ma, Y. Li, Y. Zhou, and L. Wang, “Towards better
dependency management: A first look at dependency smells in python
projects,” IEEE Transactions on Software Engineering (TSE), vol. 49,
no. 4, pp. 1741–1765, 2023.

[13] N. Harrand, A. Benelallam, C. Soto-Valero, F. Bettega, O. Barais,
and B. Baudry, “API beauty is in the eye of the clients: 2.2 million
maven dependencies reveal the spectrum of client-api usages,” Journal
of Systems and Software (JSS), vol. 184, p. 111134, 2022.

[14] J. Latendresse, S. Mujahid, D. E. Costa, and E. Shihab, “Not all depen-
dencies are equal: An empirical study on production dependencies in
NPM,” in Proceedings of the 37th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2022), 2022, pp. 73:1–73:12.

[15] D. Jaime, “Goblin: Neo4j maven central dependency graph,” Sep. 2024.
[Online]. Available: https://doi.org/10.5281/zenodo.13734581

[16] D. Jaime, J. E. Haddad, and P. Poizat, “Goblin: A framework for enrich-
ing and querying the maven central dependency graph,” in Proceedings
of the 21st IEEE/ACM International Conference on Mining Software
Repositories (MSR 2024), 2024, pp. 37–41.

[17] eclipse jkube, “jkube,” https://github.com/eclipse-jkube/jkube/issues/34
70, October 20th, 2024, accessed: December 9th, 2024.

[18] T. W. MacFarland, J. M. Yates, T. W. MacFarland, and J. M. Yates,
“Mann–whitney u test,” Introduction to nonparametric statistics for the
biological sciences using R, pp. 103–132, 2016.

[19] A. J. Jafari, D. E. Costa, R. Abdalkareem, E. Shihab, and N. Tsan-
talis, “Dependency smells in javascript projects,” IEEE Transactions on
Software Engineering (TSE), vol. 48, no. 10, pp. 3790–3807, 2022.

https://www.blackduck.com/blog/open-source-trends-ossra-report.html
https://www.blackduck.com/blog/open-source-trends-ossra-report.html
https://github.com/smallrye/smallrye-mutiny/issues/1577
https://github.com/smallrye/smallrye-mutiny/issues/1577
https://github.com/snowflakedb/snowflake-jdbc/issues/1622
https://github.com/snowflakedb/snowflake-jdbc/issues/1622
https://github.com/devonfw/IDEasy/issues/685
https://doi.org/10.5281/zenodo.13734581
https://github.com/eclipse-jkube/jkube/issues/3470
https://github.com/eclipse-jkube/jkube/issues/3470

	Introduction
	Research Questions
	Study Design
	Context Selection
	Unused Dependency Identification
	Data Analysis
	RQ1
	RQ2

	Results
	RQ1 (Introduction of unused dependencies)
	RQ2 (Persistence of unused dependencies)

	Threats to Validity
	Related work
	Conclusions and Future Work
	References

