
On the Use of ChatGPT for Code Review
Do Developers Like Reviews By ChatGPT?

Miku Watanabe1,2, Yutaro Kashiwa1, Bin Lin3, Toshiki Hirao1, Ken’ichi Yamaguchi2, Hajimu Iida1
1NAIST, Japan — 2Nara College, NIT, Japan — 3Radboud University, The Netherlands

ABSTRACT
Code review is a critical but time-consuming process for ensur-
ing code quality in modern software engineering. To alleviate the
effort of reviewing source code, recent studies have investigated
the possibility of automating the review process. Moreover, tools
based on large language models such as ChatGPT are playing an
increasingly important role in this vision. Understanding how these
tools are used during code review can provide valuable insights for
code review automation.

This study investigates for what purposes developers use Chat-
GPT during code review and how developers react to the informa-
tion and suggestions provided by ChatGPT. We manually analyze
229 review comments in 205 pull requests from 179 projects. We
find that developers often use ChatGPT for outsourcing their work
as frequently as asking for references. Moreover, we observe that
only 30.7% of responses to the answers provided by ChatGPT are
negative. We further analyze the reasons behind the negative re-
actions. Our results provide valuable insights for improving the
effectiveness of LLMs in code reviews.

CCS CONCEPTS
• Software and its engineering → Empirical software validation;
Maintaining software; Software evolution; Software design en-
gineering; Software development process management.

KEYWORDS
Code Review, ChatGPT, Empirical Study
ACM Reference Format:
Miku Watanabe1,2, Yutaro Kashiwa1, Bin Lin3, Toshiki Hirao1, Ken’ichi
Yamaguchi2, Hajimu Iida1 . 2024. On the Use of ChatGPT for Code Review:
Do Developers Like Reviews By ChatGPT?. In 28th International Conference
on Evaluation and Assessment in Software Engineering (EASE 2024), June
18–21, 2024, Salerno, Italy. ACM, New York, NY, USA, 6 pages. https://doi.or
g/10.1145/3661167.3661183

1 INTRODUCTION
Code review is an important activity for modern software quality as-
surance [3]. Previous studies have demonstrated that code reviews
improve software readability [4], maintainability [15], security [6],
and design quality [21]. Moreover, code reviews can help identify

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2024, 18–21 June, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661183

defects [4, 20] and technical debts [14]. In recent years, code re-
views are often performed online (a.k.a. Modern Code Review[24]),
using web platforms such as Gerrit1, ReviewBoard2, and GitHub
Pull Requests.3 While providing significant benefits, code review is
also a time-consuming process, which requires lots of effort from
developers [5, 23, 31].

To facilitate the code review process, several studies have pro-
posed techniques to automatically generate code reviews [11, 18,
27, 29, 31, 32]. One potential major player in this field is ChatGPT,
whose recent emergence has attracted lots of attention from the
software engineering community. ChatGPT has already exhibited
outstanding abilities for code generation [28]. Intuitively, develop-
ers might wonder what role large language models (LLMs) such
as ChatGPT can play in automatic code review generation. Indeed,
a previous study has revealed that developers sometimes refer to
ChatGPT conversations during code reviews [33]. Understanding
how LLMs like ChatGPT are used and how developers react to the
LLM-generated responses can provide valuable insights for code
review automation and speed up the code review process.

In this study, we manually analyzed 229 review comments con-
taining ChatGPT sharing links in pull requests. First, we retrieved
and categorized the purposes of using ChatGPT in code reviews.
Then, we examined whether developers are satisfied with the an-
swers/suggestions generated by ChatGPT. For those cases where
developers reacted negatively, we further inspected the reasons
behind the unsatisfaction.

To the best of our knowledge, this is the first study to investigate
how developers co-work with ChatGPT in code reviews. We believe
that the insights we provide can serve as the foundation for future
studies investigating LLM-based code reviews.

Replication. To facilitate replication and other future studies,
we provide the annotated data and the used scripts on GitHub.4

2 MOTIVATING EXAMPLES
OpenAI has launched a new function that enables developers to
share the prompts used by developers and the answers generated by
ChatGPT since May 2023.5 Thanks to this functionality, we could
observe a lot of uses of ChatGPT during code reviews.

For example, in a pull request shown in Figure 1, a patch author
ran across a performance-related issue and asked reviewers for ideas
to resolve the timeout problem. To address this issue, one reviewer
used ChatGPT, received a solution, and posted the link including
the solution. The patch author also managed to understand the idea
and liked it by saying “this is brilliant!”. This example motivates us

1https://www.gerritcodereview.com
2https://www.reviewboard.org
3https://docs.github.com/en/pull-requests
4https://github.com/mmikuu/OnTheUseOfChatGPTForCodeReview
5https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq

https://doi.org/10.1145/3661167.3661183
https://doi.org/10.1145/3661167.3661183
https://doi.org/10.1145/3661167.3661183
https://www.gerritcodereview.com
https://www.reviewboard.org
https://docs.github.com/en/pull-requests
https://github.com/mmikuu/OnTheUseOfChatGPTForCodeReview
https://help.openai.com/en/articles/7925741-chatgpt-shared-links-faq

EASE 2024, 18–21 June, 2024, Salerno, Italy Watanabe and Kashiwa, et al.

+87 −0

aepaysinger / code-challenges Public

Cw maximum subarray sum #65
 Open aepaysinger wants to merge 14 commits into from

 Conversation 15 Commits 14 Checks 0 Files changed 4

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close
these issues.

None yet

2 participants

© 2023 GitHub, Inc.

Terms Privacy Security Status Docs Contact

Notifications Fork 0 Star 0

Code Issues Pull requests 11 Actions Projects Security Insights

New issue

main CW-Maximum-subarray-sum

aepaysinger commented on Oct 28, 2022

i got the code to work, but it takes too long to run.......

Owner

aepaysinger added 2 commits last year

CW max subarray 11d6183

CW maximum subarray sum 7ee20ea

 aepaysinger requested a review from W-Ely last year

W-Ely reviewed on Oct 28, 2022 View reviewed changes

W-Ely left a comment

I'll think on the time complexity issue, here are some other thoughts.

Collaborator

code_challenges/code_wars/maximum_subarray_sum.
py

Outdated Show resolved

code_challenges/code_wars/maximum_subarray_sum.
py

Outdated Show resolved

code_challenges/code_wars/maximum_subarray_sum.
py

Outdated Show resolved

code_challenges/code_wars/maximum_subarray_sum.
py

Outdated Show resolved

code_challenges/code_wars/maximum_subarray_sum.
py

Outdated Show resolved

W-Ely commented on Oct 28, 2022 •

Regarding time complexity. The only slices that need to be considered are the ones that
terminate at a negative number. For example given sequence [1,2,3,-4,5,6,7] the only i s that
need to be considered are 0,4 and j s that need to be considered are 2, 6, so you could loop
through the list once and create two lists of the indices one for i s and one for j s that need to
be checked. Rather than checking the next i when the previous was positive.

Collaboratoredited

CW maximum subarray sum, still working on to pass codewars a57b452

aepaysinger commented on Oct 29, 2022

i left the code commented out at the bottom so i didnt lose what i had if i mess it up too much.
this update still doesnt pass codewars. it now doesn't pass tests with large arrays to check.

Owner Author

W-Ely commented on Oct 29, 2022

This is broken for a number of reasons. Consider

Collaborator

def seq_to_check(seq):
 arrays_to_check = []
 j = len(sequence) - 1
 i = 0

 for _ in range(len(sequence)):
 while sequence[i] < 1:
 i += 1
 while sequence[j] < 1:
 j -= 1
 if i >= j:
 break
 start = i
 stop = j
 arrays_to_check.append((start, stop))
 j -= 1
 i += 1
 return arrays_to_check

actual = seq_to_check([1,2,3,-4,5,6,7])
expected = [(0,2),(0,6),(4,6)]
assert actual == expected, f"{actual} != {expected}"

W-Ely commented on Oct 29, 2022 •

This uses 2 loops to first find the i s and then find the j s:

Collaboratoredited

def seq_to_check(seq):
 starts = []
 ends = []
 previous_start = False
 previous_end = False
 for i in range(len(sequence)):
 if sequence[i] < 1:
 previous_start = False
 else:
 if not previous_start:
 starts.append(i)
 previous_start = True

 for j in range(len(sequence) - 1, -1, -1):
 if sequence[j] < 1:
 previous_end = False
 else:
 if not previous_end:
 ends.append(j)
 previous_end = True

 seq_to_check = []
 for i in starts:
 for j in ends:
 if i <= j:
 seq_to_check.append((i, j))

 return seq_to_check

actual = seq_to_check([1,2,3,-4,5,6,7])
expected = [(0,6),(0,2),(4,6)]
assert actual == expected, f"{actual} != {expected}"

aepaysinger added 4 commits last year

CW maximum subarray sum, still working on 1491401

CW maximum subarray sum, still working on 021a170

CW maximum subarray sum, still working on 6a78ec3

CW maximum subarray sum, still working on 7d2ca57

aepaysinger commented on Nov 8, 2022

so i changed the code and it will pass your test but i still run into issues, can we take a look at this
together?

Owner Author

aepaysinger added 3 commits last year

CW-maximum subarray sum, still working on d473026

maximum subarray sum aa87a83

still struggling with e9f751a

W-Ely commented on Oct 9

For ref: https://www.codewars.com/kata/54521e9ec8e60bc4de000d6c

Collaborator

W-Ely commented on Oct 9

I wrote this:

It works but times out.

Here is the solution ChatGPT came up with which stretches the brain on how it even works:

Check out the link https://chat.openai.com/share/935b1b96-ff22-4bb9-bc0e-6839acc5739c

Collaborator

def max_sequence(nums):
 if len(nums) <= 1:
 return max(0, sum(nums))
 max_sum = 0
 starting_points = []
 ending_points = []
 last_index = len(nums) - 1
 if nums[0] >= 0:
 starting_points.append(0)
 for i in range(1, last_index):
 if nums[i] >= 0 and nums[i - 1] < 0:
 starting_points.append(i)
 if nums[i] >= 0 and nums[i + 1] < 0:
 ending_points.append(i)
 if nums[-1] >= 0:
 ending_points.append(last_index)
 if nums[-2] < 0:
 starting_points.append(last_index)
 for i in starting_points:
 for j in ending_points:
 if j >= i:
 max_sum = max(max_sum, sum(nums[i:j + 1]))
 return max_sum

def max_sequence(arr):
 max_sum = 0
 current_sum = 0

 for num in arr:
 current_sum = max(num, current_sum + num)
 max_sum = max(max_sum, current_sum)

 return max_sum

aepaysinger commented on Oct 10

this is brilliant!

Owner Author

aepaysinger commented on Oct 10

it took me a few tries but i totally get it. max_sum is obvious but understanding the current sum
took just a minute. but it is figuring out if its better to start over or keep going. how smart.

Owner Author

aepaysinger added 4 commits 2 months ago

complete 509cae8

Merge branch 'main' into CW-Maximum-subarray-sum 23203ff

ran black 840ca3c

putting these back on the branch bcf4bc9

 to join this conversation on GitHub. Already have an account? Sign in to commentSign up for free

Reviewers

W-Ely

At least 1 approving review is required to merge
this pull request.

Sign up Open
Cw maximum subarray sum #65
aepaysinger wants to merge 14 commits into from main CW-Maximum-subarray-sum

Figure 1: Example of positive responses from patch-authors6

to investigate how reviewers can use ChatGPT for reviewing and
we formulate our first research question as follows:
𝑅𝑄1: For what purposes do developers use ChatGPT in code
reviews?
Unlike the aforementioned case, these reactions from patch-

authors are not always positive. We observed one case where the
patch author did not accept ChatGPT’s suggestions. Figure 2 shows
the example where a developer does not like the answer provided
by ChatGPT. In the pull request, a patch author also encountered a
performance issue and asked for help from reviewers. A reviewer
consulted ChatGPT and presented two potential solutions provided
by ChatGPT.

However, the patch author was not satisfied with these two
solutions because one contained a defect and the other could lead
to significant performance degradation. Motivated by this example,
we posit our second research question:
𝑅𝑄2: To what extent are developers satisfied with the an-
swers provided by ChatGPT in code review related tasks?

6https://github.com/aepaysinger/code-challenges/pull/65#issuecomment-17531752
42
7https://github.com/ggerganov/llama.cpp/pull/1807#issuecomment-1586554971

+463 −135

ggerganov / llama.cpp Public

Metal implementation for all k_quants #1807
 Merged ikawrakow merged 16 commits into from on Jun 13

 Conversation 7 Commits 16 Checks 22 Files changed 3

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

Successfully merging this pull request may close these
issues.

None yet

5 participants

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact

Notifications Fork 6.5k Star 45.4k

Code Issues 676 Pull requests 126 Discussions Actions Projects 4 Wiki Security Insights

New issue

master ik/metal_k_quants

ikawrakow commented on Jun 12

Performance is not quite as good as Q4_0 and Q4_1 . The k-quantization needs to do quite a bit of more work
when performing dot products, but that somehow did not matter on the other platforms (AVX2, ARM_NEON,
CUDA). On Metal we see a significant difference:

Quantization Time/token in ms

Q4_0 23.0

Q4_1 23.3

Q2_K 25.5

Q3_K_M 28.1

Q4_K_S 25.3

Q5_K_S 27.8

Q6_K 27.3

Times given are for the 7B model on a M2 Max 30-core GPU.

👍

3

❤

1

Collaborator

Kawrakow added 16 commits 6 months ago

metal : improve q4_K a75c129…

metal : small improvement for Q4_K 5e2f67f

metal : still optimizing Q4_K fff0e4f…

metal : some more optimizations 355e8c6…

metal : Q3_K support f5b6ed3…

metal : Q5_K support cda2b7b…

metal : still not able to figure out why q3_K does not work bdf3a66

Minor 66dddda

metal : yet another failed attempt to make q3_K work 3bd1608

metal : optimize Q5_K 3b4f5e1…

metal : q3_K still not working 982c7cf…

metal : q3_K finally working 27a69d6…

metal : Q3_K 1st optimization pass 3d5ff12

metal : Q3_K second optimization pass - 29.6 ms/token df2c1dc

metal : Q3_K cleanup aa23744

metal : fixed accidentally broken Q2_K a6812a1

 ikawrakow requested a review from ggerganov 6 months ago

shouyiwang commented on Jun 12

Congratulations on successfully implementing Q3_K!
I noticed in your commit comment that you mentioned using uint16 and uint32 pointers. This piqued my
curiosity about whether GPT-4 played a role in troubleshooting the issue, as it may have also identified this
problem. Can you provide any insights on this?
https://chat.openai.com/share/4b3feffc-438c-492f-80ef-a26a7b026550

I have just updated the code in this branch and conducted a build and test. After testing, I have observed that it
is functional on Q3_K_M. However, Q5_K_M models cannot be loaded when using GPU, it works on CPU
though, which could be due to the possibility that Q5_K_M's GPU version has not yet been implemented?

The loading error:

👎

1

ggml_metal_add_buffer: too many buffers
llama_init_from_file: failed to add buffer
llama_init_from_gpt_params: error: failed to load model '../models/ggml-Wizard-Vicuna-13B-Uncensored.ggmlv3.q5_K_M.bin'
main: error: unable to load model

ikawrakow commented on Jun 12

@shouyiwang Thanks for trying to help using GPT-4. No, the GPT-4 answers weren't helpful. One suggestion
has a bug (can you spot it?), the other suggestion makes the code run significantly slower instead of faster, and
the two other comments are very generic and at the level of CS-101.

Concerning your problem with running Q5_K on Metal: not sure what the issue is, but it is definitely not related
to the Q5_K computation kernels being added in this PR. As per error message, the problem occurs while
loading the model.

👍

2

Collaborator Author

shouyiwang commented on Jun 12 •

@ikawrakow Thanks for explaining!
I am travelling with my tiny screen Macbook and I am not familiar with the code. So I cannot spot the bug in its
suggestion. :(

edited

ikawrakow commented on Jun 12

@shouyiwang It is likely that #1817 will fix the model loading problem you have observed.

👀

1

Collaborator Author

ggerganov approved these changes on Jun 12 View reviewed changes

ggerganov left a comment

🦙

Merge whenever you decide

👍

1

Owner

 ikawrakow merged commit 74a6d92 into on Jun 13
22 checks passed

View detailsmaster

 ikawrakow deleted the branch 6 months agoik/metal_k_quants

x4080 commented on Jun 13 •

So, this includes the gpu that only support q4_0 for now ? Or only for cpu ?

edit : ok so it works for gpu too according @shouyiwang

edited

shouyiwang commented on Jun 13

@shouyiwang It is likely that #1817 will fix the model loading problem you have observed.

I know what happened!
I just tried a 7b q5_k_m with -ngl 1, it works. 13b q5_k_m doesn't work because of apple's vram restriction(I
have 16GB ram).
That's the reason why it works on CPU but not GPU.

 eusip mentioned this pull request on Jun 16

M1.M2 MacOS Users TimDettmers/bitsandbytes#485 Open

 SlyEcho mentioned this pull request on Jun 19

Shape Error When Running Inference after Converting OpenLlama 3B to GGML
#1709

Closed

byroneverson added a commit to byroneverson/llm.cpp that referenced this pull request on Jun 30

Squashed commit of the following: 3904448…

byroneverson added a commit to byroneverson/llm.cpp that referenced this pull request on Jun 30

Squashed commit of the following: 1074a03…

 to join this conversation on GitHub. Already have an account? Sign in to commentSign up for free

Reviewers

ggerganov

Sign upProduct Solutions Open Source Pricing Search or jump to... Sign in Merged
Metal implementation for all k_quants #1807
ikawrakow merged 16 commits into from on Jun 13master ik/metal_k_quants

Figure 2: Example of negative responses from patch-authors7

3 STUDY DESIGN
3.1 Data Collection
Our study aims to understand how developers use ChatGPT during
code reviews. More specifically, we would like to investigate what
purposes developers use ChatGPT for (RQ1) and how developers
react to the answers/solutions provided by ChatGPT (RQ2).

To reach our goal, we first need to identify the reviews in which
developers use ChatGPT. To do so, we extend the dataset provided
by Tao et al. [33]. The original dataset was created by identifying
OpenAI’s URL links to ChatGPT conversations (i.e., links starting
with https://chat.openai.com/share/) . They collected such links from
files, commit messages, issues, pull requests, and discussions on
GitHub. Here, our researchmainly concerns the pull requests.While
Tao et al. [33] provide several versions of the dataset, the latest
version at the time of study dates back to October 2023, which does
not have a sufficient amount of code review data. Therefore, we
decided to collect new code review data in the same manner as the
previous study using GitHub GraphQuery API.3 We searched for
the pull requests containing ChatGPT links from 27th May, 2023
(i.e., the release date for ChatGPT share link) to 29th February, 2024.

We collected 509 pull requests (PRs) from 332 projects which
contain links to ChatGPT conversations (606 review comments in
total). However, in fact, these links can appear in both PR descrip-
tion and discussion comments, and not all of the comments are
code reviews. To ensure that the studied ChatGPT uses are part
of code review activities, we first excluded those links embedded
in PR description and comments left by patch authors. This step
led to 243 remaining review comments. We then manually went
through all of them and removed invalid comments (e.g., the deleted
comments, comments not for reviewing, comments including the
ChatGPT links cited from prior comments, etc.). Our final dataset
includes 229 review comments. These review comments come from
205 pull requests collected from 179 projects.

3https://docs.github.com/en/graphql

https://github.com/aepaysinger/code-challenges/pull/65#issuecomment-1753175242
https://github.com/aepaysinger/code-challenges/pull/65#issuecomment-1753175242
https://github.com/ggerganov/llama.cpp/pull/1807#issuecomment-1586554971
https://docs.github.com/en/graphql

On the Use of ChatGPT for Code Review EASE 2024, 18–21 June, 2024, Salerno, Italy

3.2 Data Analysis
To answer RQ1, we performed a manual inspection to retrieve the
purpose of using ChatGPT during code reviews. Two of the authors
independently inspected each of the code reviews and annotated the
purpose. In 75.2% of the inspected cases, the two authors reached an
agreement, which led to a Cohen’s kappa coefficient of 0.79, demon-
strating a substantial agreement [16]. To resolve the disagreements,
a third author checked the conflicting case and the corresponding
annotations, and then recommended a final annotation. The rec-
ommendation was discussed with the first two authors until a full
agreement was reached. The three annotators have 7 to 15 years of
programming experience (7, 13, and 15 years, respectively).

To answer RQ2, we first categorized the attitude of the patch
author toward answers/suggestions generated by ChatGPT. More
specifically, we considered the following five categories: 1) positive,
2) negative, 3) neutral (often, the patch author praised the ChatGPT
answers while pointing out some non-major issues), 4) no reply
(the patch author did not reply by the time of data collection), and 5)
ignored (the patch author replied but did not mention the ChatGPT
answers). To better understand why patch authors are unsatisfied
with the ChatGPT answers and provide actionable insights for
future code review automation techniques, we manually analyzed
the reason behind the negative attitudes. All the manual analyses
conducted followed the protocol used to answer RQ1. As a result,
we achieved 84.7% agreement rates with a Cohen’s kappa coefficient
of 0.71 (substantial agreement) for attitude categorization and 69.4%
agreement rates with a coefficient of 0.68 (substantial agreement)
for reason extraction [16]. Similarly, a third author resolved the
conflicts throughout the discussions. Note that, in order to ensure
accurate labeling, we decided to perform the manual inspection for
classifying attitudes instead of using sentiment analysis tools [1, 7].

It is worth noting that there are several pull requests written in
non-English languages. As the number of data points is not huge,
to prevent further reducing the samples and keep the diversity, we
used translation services to understand the contents.

4 RESULTS
4.1 𝑅𝑄1: Purposes of ChatGPT Uses
In total, we inspected 229 review comments. During the inspec-
tion, we excluded 10 review comments because the comments did
not contain enough information to derive a reliable annotation.
In the end, we classified the purposes extracted from 219 review
comments into two categories (Reference and Outsource) and 15
sub-categories, which are illustrated in Figure 3. The numbers in-
side the circles on the top right corner of categories represent the
number of cases we identified for each purpose category. Below we
describe the details of these (sub)categories.

4.1.1 Reference. This category refers to those cases in which Chat-
GPT is not directly asked to address developers’ issues. Instead,
developers use ChatGPT to gain understanding and find evidence to
support their opinions. 112 cases fall into this category, which can
be further classified into 7 sub-categories: Refactoring, Implemen-
tation, Design, Non-Programming Tasks, Testing, Documentation,
and Others.

Refactoring. Developers use ChatGPT to give references for
better programming practices. The information providedmight help
improve code maintainability, performance, security, readability,
etc. We found 35 such cases, accounting for 16.0%. For instance, a
reviewer pointed out that the submitted JavaScript patches are too
imperative, and asked ChatGPT to explain the differences between
imperative and declarative programming with examples.4

Implementation. Developers use ChatGPT to learn certain
development techniques. We observed 33 such cases (15.1%), which
is the most common one in the “Reference” category. For example, a
reviewer consulted ChatGPT on how to use the Callable type hint.5

Design.Developers consult ChatGPT to compare design choices.
We observed 14 cases (6.4%) in this category. For example, a reviewer
and a patch author discussed the approach for deleting records, and
ChatGPT was asked to compare soft deletion and hard deletion.6

Non-Programming Tasks. Reviewers use ChatGPT to inform
patch authors how to complete non-programming tasks (e.g., envi-
ronment setup). There are 10 such cases, which account for 4.6%.
For example, a patch author inappropriately pushed commits and a
reviewer used ChatGPT to explain how to rebase the commits.7

Testing. Developers utilize ChatGPT to demonstrate how to
create test cases. We observed 7 cases of this category, which ac-
count for 3.2%. For example, a reviewer asked ChatGPT to create
an example of using mockMVC in Spring.8

Documentation. Developers use ChatGPT to support their ar-
guments regarding language issues in documentation. 6 cases (2.7%)
fall into this category. For example, a reviewer asked a patch author
to fix a grammar issue in the prompts used, by showing ChatGPT’s
answer as evidence.9

Others. 7 cases (3.2%) do not fall into the above categories.
4.1.2 Outsource. This category refers to those cases in which Chat-
GPT is directly asked to resolve problems or concerns of developers.
There are 107 cases falling into this category, slightly less than
the “Reference” category (112). These cases can be further classified
into 8 sub-categories: Implementation, Refactoring, Bug-fix, Review,
Testing, Design, Documentation, and Others.

Implementation. Developers directly ask ChatGPT to imple-
ment the program needed. 29 cases (13.2%) fit into this sub-category.
Similar to the “Reference” category, “implementation” is the most
prevalent use of ChatGPT during code reviews. For example, a
reviewer asked ChatGPT for a solution to disable internet access
during the GitHub Actions build process.10Another interesting ex-
ample we found was that a reviewer tries to resolve Self-Admitted
Technical Debt (SATD) [22] with the help of ChatGPT. In a review
comment11, a reviewer posted the link to the ChatGPT conver-
sation in which he fed the SATD comment and the source code
to ChatGPT and asked ChatGPT to generate implementations to
address it.
4https://github.com/magnifiq/js-practice-vention/pull/9#discussion_r1353282723
5https://github.com/erobitschek/med-ml/pull/5#discussion_r1346318811
6https://github.com/GaloyMoney/galoy-mobile/pull/2361#issuecomment-16135228
85
7https://github.com/Altinity/clickhouse-backup/pull/648#issuecomment-15929137
92
8https://chat.openai.com/share/86b29c8a-ba4c-479c-9dfa-e102bc9c92a8
9https://github.com/huseyinbagator/react-demo-todo-app/pull/8#discussion_r12646
47535
10https://github.com/erobitschek/med-ml/pull/5#discussion_r1346318811
11https://github.com/bancaditalia/black-it/pull/58#discussion_r1298585008

https://github.com/magnifiq/js-practice-vention/pull/9#discussion_r1353282723
https://github.com/erobitschek/med-ml/pull/5#discussion_r1346318811
https://github.com/GaloyMoney/galoy-mobile/pull/2361#issuecomment-1613522885
https://github.com/GaloyMoney/galoy-mobile/pull/2361#issuecomment-1613522885
https://github.com/Altinity/clickhouse-backup/pull/648#issuecomment-1592913792
https://github.com/Altinity/clickhouse-backup/pull/648#issuecomment-1592913792
https://chat.openai.com/share/86b29c8a-ba4c-479c-9dfa-e102bc9c92a8
https://github.com/huseyinbagator/react-demo-todo-app/pull/8#discussion_r1264647535
https://github.com/huseyinbagator/react-demo-todo-app/pull/8#discussion_r1264647535
https://github.com/erobitschek/med-ml/pull/5#discussion_r1346318811
https://github.com/bancaditalia/black-it/pull/58#discussion_r1298585008

EASE 2024, 18–21 June, 2024, Salerno, Italy Watanabe and Kashiwa, et al.

Review with ChatGPT

Outsource

Testing Imple-
mentation Review Testing Design Documen-

tation

112
Reference

Tasks Refac-
toring Bug-Fix

14 10 7 6 7 29 22 16 12 10 9 5

219

107

35
Refac-
toring

Imple-
mentation

33
Design Others

4
OthersDocumen-

tation

Figure 3: Classification results

Refactoring. In this category, developers ask ChatGPT to im-
prove non-functional perspectives without modifying the behavior
of the products. We observed 22 cases in this category, which ac-
counts for 10.0%. For example, a reviewer asked ChatGPT to reduce
the number of lines of code to improve readability.12

Bug-fix.Developers use ChatGPT to fix functional bugs. 16 cases
(7.3%) fall into this category. For example, a reviewer asked ChatGPT
how to fix an issue related to authorization flows by providing the
descriptions of correct behaviors and actual behaviors.13

Review. Sometimes, developers ask ChatGPT to review the im-
plemented code directly. We found 12 instances (5.5%) of this cate-
gory. For example, a reviewer asked ChatGPT for the “thoughts on
this code”.14 ChatGPT returned a few comments and one of them
including a change example was merged into the repository.

Testing. Code reviews in this category employ ChatGPT to cre-
ate test cases or verify the correctness of product behaviors. We
observed 10 cases of this category, which account for 4.6%. For exam-
ple, a reviewer asked ChatGPT to create a test method that verifies
if a bug-fix patch is correct by giving the source code that does not
work correctly.15Another interesting example is that a reviewer
asked ChatGPT to verify whether two given implementations (one
implemented with numpy library and the other implemented with
pytorch library) have the same behavior.16

Design. In this category, developers ask ChatGPT to make de-
sign choices, often with rationales. We encountered 9 such cases,
accounting for 4.1%. For example, a reviewer asked ChatGPT for
the common practice of encouraging mobile app users who are
satisfied with the app to leave a review.17

Documentation. Developers have also utilized ChatGPT to
modify the documentation.We found 5 cases of this category, which
account for 2.3%. For example, a reviewer simply sent ChatGPT
the current documentation and asked ChatGPT how it can be im-
proved.18 ChatGPT listed several points for improvement and pre-
sented a sample revision.

Others. 4 cases do not fall into the above categories (1.8%).�
�

�

Answer to RQ1: Reviewers use ChatGPT to outsource implemen-
tation, refactoring, bug fixing, reviewing, and testing. Around half
of the time, reviewers use ChatGPT to look for references.

12https://github.com/tinygrad/tinygrad/pull/1661#issuecomment-1692144992
13https://github.com/transloadit/uppy/pull/4110#issuecomment-1709589496
14https://github.com/SSWConsulting/SSW.Website/pull/1284#discussion_r1303683
136
15https://github.com/citusdata/activerecord-multi-tenant/pull/199#issuecomment-
1575558178
16https://github.com/roboflow/supervision/pull/177#issuecomment-1643969353
17https://github.com/OpenAdaptAI/OpenAdapt/pull/228#issuecomment-1595122865
18https://github.com/konfuzio-ai/konfuzio-sdk/pull/296#discussion_r1243266447

4.2 𝑅𝑄2: Developers’ Reactions to ChatGPT
We inspected the reactions to 229 review comments. Throughout
the manual inspection, we found that 133 code reviews containing
ChatGPT conversations received responses from patch authors,
while 89 code reviews did not. For the remaining 7 code reviews, we
were not able to determine because the comments did not contain
enough information to derive a reliable annotation. Out of 133
responses, we excluded 7 responses because the reaction cannot be
classified due to the lack of context and removed 19 responses that
did not mention the ChatGPT-related discussions although they
replied to the comments. In the end, there are 114 valid responses,
including 73 positive responses, 35 negative responses, and 6 neutral
responses. Most of the responses (64.0%) to ChatGPT’s answers
are positive while a non-negligible number of responses (30.7%)
are negative. Interestingly, 65.7% of the negative responses (i.e., 23
responses) are relevant to the “Outsource” categories in RQ1, which
implies the necessity of careful checks by reviewers.

We then categorized the reasons for these 35 negative responses
and extracted 12 reasons behind the negativity. Table 1 summa-
rizes the reasons for negative responses and frequencies. The most
common reason is that “The provided solution does not bring extra
benefits” (7 cases). The second common reasons are “The provided
solution contains a bug or is not working” and “The developer
prefers another coding style/design choice” (6 cases each).�
�

�

Answer to RQ2: 30.7% of responses to the ChatGPT’s answers are
negative reactions and the most common reason is “The provided
solution does not bring extra benefits”.

5 FUTURE DIRECTION
In our study, we have revealed that developers tend to accept most
of the review suggestions by ChatGPT. However, the negative reac-
tions observed, especially when outsourcing reviews to ChatGPT,
imply room for improvement. Studying why ChatGPT’s suggestion
does not reach developers’ expectations would fill the gap between
AI developers and practitioners. Our future work includes.

1. Developing automatic approaches for identifying the
relevant reactions to new versions of ChatGPT: The evolution
of LLMs is rapid and the collected reactions or the identified issues
may no longer be valid, we will need to periodically collect and
classify new reactions to monitor the effectiveness of LLMs in code
reviews. One of the possible directions is to use sentiment analysis
tools. The challenge here is to extract relevant review comments
reacting to ChatGPT answers, due to the difficulty of untangling
conversations mentioning different discussion points.

2. Developing context-aware code reviewing models: As a
result of our study, we discovered that a few suggestions cannot

https://github.com/tinygrad/tinygrad/pull/1661#issuecomment-1692144992
https://github.com/transloadit/uppy/pull/4110#issuecomment-1709589496
https://github.com/SSWConsulting/SSW.Website/pull/1284#discussion_r1303683136
https://github.com/SSWConsulting/SSW.Website/pull/1284#discussion_r1303683136
https://github.com/citusdata/activerecord-multi-tenant/pull/199#issuecomment-1575558178
https://github.com/citusdata/activerecord-multi-tenant/pull/199#issuecomment-1575558178
https://github.com/roboflow/supervision/pull/177#issuecomment-1643969353
https://github.com/OpenAdaptAI/OpenAdapt/pull/228#issuecomment-1595122865
https://github.com/konfuzio-ai/konfuzio-sdk/pull/296#discussion_r1243266447

On the Use of ChatGPT for Code Review EASE 2024, 18–21 June, 2024, Salerno, Italy

Table 1: Negative Categories

Reasons for negative comments #

The provided solution does not bring extra benefits. 7
The provided solution contains bugs or is not working. 6
The developer prefers another coding style/design choice. 6
The developer has more optimal solutions for the issue. 4
The solution provided is generally true but is not for this case. 2
The solution needs more effort. 2
The query by the reviewer is inappropriate. 2
The provided solution does not consider specific restrictions/requirements of the project. 2
The provided solution contains bugs or is not working. Also, the provided solution degrades performance. 1
The solution provided is too general and overlooks details and specific features. 1
The developer is against the use of ChatGPT for certain purposes. 1
The reference is not needed anymore. 1

be accepted because they do not fit the context. For example, a
reviewer admitted the suggestion is true in general cases but it
does not work for the project.19 One possible solution is to use the
domain adaption technique that fine-tunes the tasks for a specific
project. Fukumoto et al. [9] use this technique for code completion
and demonstrate the ability of enforcing generated code to follow
the coding rules of projects.

6 THREAT TO VALIDITY
Threats to internal validity: This study heavily relies on human
annotations, which can be subjective. To mitigate the potential bias,
we examined code reviews independently and discussed the review
comments that have conflicting annotations until full agreement.
Threats to construct validity: This study utilized ChatGPT links
to identify ChatGPT-supported code reviews. However, sometimes
developers would directly use ChatGPT-generated solutions/sug-
gestions without clear references to ChatGPT. The current dataset
we use does not contain these cases, which might bias our results.
Threats to external validity: This study examines only 229 cases
of code reviews using ChatGPT. These instances are all we could
retrieve. One reason for such a small number is that the function of
ChatGPT link sharing was only launched in May 2023. Replication
studies are needed with extended datasets collected after a certain
period of time to verify our results.

7 RELATEDWORK
Emotions in Code Review: Egelman et al. [7] surveyed 1,317 de-
velopers to characterize the negative experiences and also proposed
a model to identify five feelings of pushback during code review us-
ing log data. Ahmed et al. [1] have proposed a customized sentiment
analysis tool for the software engineering tasks. Their approach
achieved 83% accuracy in identifying negative review comments.
Sarker et al. [26] developed an approach to detect toxic conversa-
tions in code review. Specifically, they fine-tuned a RoBERTa model
with the 19,651 code review comments and found that the model
achieved an F1-score of 0.88. Ferreira et al. [8] studied confronta-
tional conflicts in code review discussions and found that over half
(66.7%) of the non-technical emails associated with rejected changes
included uncivil features in the Linux Kernel project.
19https://github.com/VOICEVOX/voicevox_engine/pull/904#discussion_r143335994
4

These studies examine negative feelings in review conversations
in general and do not focus on reactions against a specific context
(i.e., ChatGPT in this study).

AutomatedCodeReviews: In recent years, a lot of studies have
employed generative models for code review. For instance, Tufano
et al. [30] employed a Neural Machine Translation (NMT) model
to translate submitted code to reviewed code. Similarly, Thongta-
nunam et al. [29] also automate code review tasks, using a Byte-Pair
Encoding and a Transformer-based NMT architecture. Li et al. [18]
evaluated a pre-trained model for four pre-training tasks tailored
for code review, utilizing code changes and comments. Their evalu-
ations show that the model outperforms other pre-trained models
in terms of code change quality estimation, review comment gener-
ation, and code refinement. Qi et al. [10] compared ChatGPT with a
state-of-the-art code review tool employing CodeT5 to examine the
performance of the code refinement task. Their empirical results
show that ChatGPT outperforms CodeReviewer.

These studies develop techniques to automate code reviewing
while our work investigates how developers use generative ap-
proaches to support their code review tasks.

ChatGPT for Software Engineering Tasks: The role of Chat-
GPT in the realm of software engineering tasks has been particu-
larly noteworthy, demonstrating the substantial impact. Sakura et
al. [25] leverage ChatGPT and execution traces to identify the cause
of bugs. Their experiment shows that execution traces can improve
the performance of ChatGPT in identifying the cause of bugs. Li
et al. [17] evaluated the applicability of ChatGPT for identifying
failure-inducing test cases. They observe that ChatGPT can find
correct failure-inducing test cases for buggy programs with a low
success rate (28.8%). Eman et al. [2] examined refactoring activi-
ties with ChatGPT. They searched DevGPT [33] for discussions
including refactoring-related keywords and disclosed the textual
communication patterns of refactoring requests sent to ChatGPT.
Jin et al. [12] examine how helpful the code generated by ChatGPT
is. They show that 16.8% of the generated code is directly used, 26.0%
is modified, and 32% is provided as supplementary information.

Several studies applied ChatGPT to software engineering tasks
but reported negative results. Kabir et al. [13] studied ChatGPT’s
replies to 517 questions from Stack Overflow. They found that 52%
of ChatGPT answers contain inaccuracies and 77% are verbose.
However, participants preferred ChatGPT-generated answers 39%

https://github.com/VOICEVOX/voicevox_engine/pull/904#discussion_r1433359944
https://github.com/VOICEVOX/voicevox_engine/pull/904#discussion_r1433359944

EASE 2024, 18–21 June, 2024, Salerno, Italy Watanabe and Kashiwa, et al.

of the time. Liu et al. [19] identified and characterized potential
issues with the quality of ChatGPT-generated code. They find that
out of 4,066 programs generated by ChatGPT, 2,756 programs are
regarded as correct, 1,082 programs return wrong outputs, and
177 programs contain compilation or runtime errors. Also, they
observed that 1,930 code snippets suffer frommaintainability issues.

These related studies have either focused on techniques for au-
tomating code reviews, or the application of ChatGPT in other SE
tasks. There is currently no study to investigate the use of ChatGPT
in code reviews, and we hope our study can fill this gap.

8 CONCLUSIONS
Our study involving 229 review comments from 179 projects ex-
plores how reviewers use ChatGPT for code review and to what
extent patch authors like the code review suggestions provided by
ChatGPT. As a result, we found that reviewers often use ChatGPT
to outsource implementation, refactoring, reviewing, bug fixing,
and testing, and they often use the suggestions by ChatGPT as
evidence. In addition, we found that 30.7% of reactions to the Chat-
GPT’s answers are negative and the most common reason is “The
provided solution does not bring extra benefits”.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support of JSPS for the
KAKENHI grants (JP21H03416, JP24K02921), Bilateral Program
grant JPJSBP120239929, and JST for the PRESTO grant JPMJPR22P3.

REFERENCES
[1] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. 2017.

SentiCR: a customized sentiment analysis tool for code review interactions. In
Proc. of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE’17). 106–111.

[2] Eman Abdullah AlOmar, Anushkrishna Venkatakrishnan, Mohamed Wiem
Mkaouer, Christian D. Newman, and Ali Ouni. 2024. How to Refactor this
Code? An Exploratory Study on Developer-ChatGPT Refactoring Conversations.
CoRR abs/2402.06013 (2024).

[3] Alberto Bacchelli and Christian Bird. 2013. Expectations, Outcomes, and Chal-
lenges of Modern Code Review. In Proc. of the 2013 International Conference on
Software Engineering (ICSE ’13). 712–721.

[4] Gabriele Bavota and Barbara Russo. 2015. Four eyes are better than two: On
the impact of code reviews on software quality. In Proc. of the 2015 International
Conference on Software Maintenance and Evolution (ICSME’15). 81–90.

[5] Amiangshu Bosu and Jeffrey C. Carver. 2013. Impact of Peer Code Review on Peer
Impression Formation: A Survey. In Proc. of the 2013 International Symposium on
Empirical Software Engineering and Measurement (ESEM’13). 133–142.

[6] Amiangshu Bosu, Jeffrey C. Carver, Munawar Hafiz, Patrick Hilley, and Derek
Janni. 2014. Identifying the characteristics of vulnerable code changes: an empiri-
cal study. In Proc. of the 22nd International Symposium on Foundations of Software
Engineering (FSE’14). 257–268.

[7] Carolyn D. Egelman, Emerson R. Murphy-Hill, Elizabeth Kammer, Margaret Mor-
row Hodges, Collin Green, Ciera Jaspan, and James Lin. 2020. Predicting de-
velopers’ negative feelings about code review. In Proc. of the 42nd International
Conference on Software Engineering (ICSE’20). 174–185.

[8] Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The "Shut the f**k up"
Phenomenon: Characterizing Incivility in Open Source Code Review Discussions.
Proc. ACM Hum. Comput. Interact. 5 (2021), 353:1–353:35.

[9] Daisuke Fukumoto, Yutaro Kashiwa, Toshiki Hirao, Kenji Fujiwara, and Hajimu
Iida. 2023. An Empirical Investigation on the Performance of Domain Adaptation
for T5 Code Completion. In Proc. of the 30th IEEE International Conference on
Software Analysis, Evolution and Reengineering (SANER’23). 693–697.

[10] Qi Guo, Junming Cao, Xiaofei Xie, Shangqing Liu, Xiaohong Li, Bihuan Chen,
and Xin Peng. 2024. Exploring the Potential of ChatGPT in Automated Code
Refinement: An Empirical Study. In Proc. of the 46th IEEE/ACM International
Conference on Software Engineering (ICSE’24). 34:1–34:13.

[11] Vincent J. Hellendoorn, Jason Tsay, Manisha Mukherjee, and Martin Hirzel. 2021.
Towards automating code review at scale. In Proc. of the 29th Symposium on the
Foundations of Software Engineering (FSE’21). 1479–1482.

[12] Kailun Jin, Chung-Yu Wang, Hung Viet Pham, and Hadi Hemmati. 2024. Can
ChatGPT Support Developers? An Empirical Evaluation of Large Language
Models for Code Generation. In Proc. of the International Conference on Mining
Software Repositories (MSR 2024).

[13] Samia Kabir, David N. Udo-Imeh, Bonan Kou, and Tianyi Zhang. 2023. Who An-
swers It Better? An In-Depth Analysis of ChatGPT and Stack Overflow Answers
to Software Engineering Questions. CoRR abs/2308.02312 (2023).

[14] Yutaro Kashiwa, Ryoma Nishikawa, Yasutaka Kamei, Masanari Kondo, Emad
Shihab, Ryosuke Sato, and Naoyasu Ubayashi. 2022. An empirical study on
self-admitted technical debt in modern code review. Information and Software
Technology (IST) 146 (2022), 106855.

[15] Oleksii Kononenko, Olga Baysal, and Michael W. Godfrey. 2016. Code review
quality: how developers see it. In Proc. of the 38th International Conference on
Software Engineering (ICSE’16). 1028–1038.

[16] J. Richard Landis and Gary G. Koch. 1977. The Measurement of Observer Agree-
ment for Categorical Data. Biometrics 33 (1977), 159–174.

[17] Tsz On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, Shing-Chi Che-
ung, and Jeff Kramer. 2023. Nuances are the Key: Unlocking ChatGPT to Find
Failure-Inducing Tests with Differential Prompting. In Proc. of the 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE’23). 14–26.

[18] Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep
Majumder, Jared Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan.
2022. Automating code review activities by large-scale pre-training. In Proc. of
the 30th Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (FSE’22). 1035–1047.

[19] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li
Li, Xuan-Bach D. Le, and David Lo. 2024. Refining ChatGPT-Generated Code:
Characterizing and Mitigating Code Quality Issues. ACM Trans. Softw. Eng.
Methodol. (2024).

[20] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan. 2014.
The impact of code review coverage and code review participation on software
quality: a case study of the qt, VTK, and ITK projects. In Proc. of the 11th Working
Conference on Mining Software Repositories (MSR’14). 192–201.

[21] Matheus Paixão, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and
Mark Harman. 2021. The Impact of Code Review on Architectural Changes. IEEE
Trans. Software Eng. 47, 5 (2021), 1041–1059.

[22] Aniket Potdar and Emad Shihab. 2014. An Exploratory Study on Self-Admitted
Technical Debt. In Proc. of the 30th International Conference on Software Mainte-
nance and Evolution (ICSME’14). 91–100.

[23] Peter C. Rigby and Christian Bird. 2013. Convergent contemporary software
peer review practices. In Proc. of the 2013 Joint Meeting of the European Software
Engineering Conference (FSE’13). 202–212.

[24] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto
Bacchelli. 2018. Modern code review: a case study at google. In Proc. of the 40th
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP’18). 181–190.

[25] Takafumi Sakura, Ryo Soga, Hideyuki Kanuka, Kazumasa Shimari, and Takashi
Ishio. 2023. Leveraging Execution Trace with ChatGPT: A Case Study on Au-
tomated Fault Diagnosis. In Proc. of the 39th IEEE International Conference on
Software Maintenance and Evolution (ICSME 2023). 397–402.

[26] Jaydeb Sarker, Sayma Sultana, Steven R. Wilson, and Amiangshu Bosu. 2023.
ToxiSpanSE: An Explainable Toxicity Detection in Code Review Comments. In
Proc. of the ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM’23). 1–12.

[27] Shu-Ting Shi, Ming Li, David Lo, Ferdian Thung, and Xuan Huo. 2019. Automatic
Code Review by Learning the Revision of Source Code. In Proc. of the 33th AAAI
Conference on Artificial Intelligence (AAAI’19). 4910–4917.

[28] Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An
Analysis of the Automatic Bug Fixing Performance of ChatGPT. In Proc. of the
2023 International Workshop on Automated Program Repair (APR’23). 23–30.

[29] Patanamon Thongtanunam, Chanathip Pornprasit, and Chakkrit Tantithamtha-
vorn. 2022. AutoTransform: Automated Code Transformation to Support Modern
Code Review Process. In Proc. of the 44th International Conference on Software
Engineering (ICSE’22). 237–248.

[30] Michele Tufano, Jevgenija Pantiuchina, CodyWatson, Gabriele Bavota, and Denys
Poshyvanyk. 2019. On learning meaningful code changes via neural machine
translation. In Proc. of the 41st International Conference on Software Engineering
(ICSE’19). 25–36.

[31] Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys
Poshyvanyk, and Gabriele Bavota. 2022. Using Pre-Trained Models to Boost Code
Review Automation. In Proc. of the 44th International Conference on Software
Engineering (ICSE’22). 2291–2302.

[32] Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and
Gabriele Bavota. 2021. Towards Automating Code Review Activities. In Proc. of
the 43rd International Conference on Software Engineering (ICSE’21). 163–174.

[33] Tao Xiao, Christoph Treude, Hideaki Hata, and Kenichi Matsumoto. 2024. De-
vGPT: Studying Developer-ChatGPT Conversations. In Proc. of the International
Conference on Mining Software Repositories (MSR 2024).

	Abstract
	1 Introduction
	2 Motivating Examples
	3 Study Design
	3.1 Data Collection
	3.2 Data Analysis

	4 Results
	4.1 RQ1: Purposes of ChatGPT Uses
	4.2 RQ2: Developers' Reactions to ChatGPT

	5 Future Direction
	6 Threat to Validity
	7 Related work
	8 Conclusions
	Acknowledgments
	References

