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Automatic test generation plays a critical role in software quality assurance. While the recent advances in
Search-Based Software Testing (SBST) and Large Language Models (LLMs) have shown promise in gener-
ating useful tests, these techniques still struggle to cover certain branches. Reaching these hard-to-cover
branches usually requires constructing complex objects and resolving intricate inter-procedural dependen-
cies in branch conditions, which poses significant challenges for existing techniques. In this work, we propose
TELPA, a novel technique aimed at addressing these challenges. Its key insight lies in extracting real usage
scenarios of the target method under test to learn how to construct complex objects and extracting meth-
ods entailing inter-procedural dependencies with hard-to-cover branches to learn the semantics of branch
constraints. To enhance efficiency and effectiveness, TELPA identifies a set of ineffective tests as counter-
examples for LLMs and employs a feedback-based process to iteratively refine these counter-examples. Then,
TELPA integrates program analysis results and counter-examples into the prompt, guiding LLMs to gain
deeper understandings of the semantics of the target method and generate diverse tests that can reach the
hard-to-cover branches. Our experimental results on 27 open-source Python projects demonstrate that TELPA
significantly outperforms the state-of-the-art SBST and LLM-enhanced techniques, achieving an average im-
provement of 34.10% and 25.93% in terms of branch coverage.
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1 INTRODUCTION

Automatic test generation holds significant importance in software quality assurance, which aims
to efficiently detect software bugs by automatically covering various behaviors of the software
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under test. Recently, many test generation techniques have been proposed, among which Search-
Based Software Testing (SBST) [29, 39, 40] is one of the most widely-studied categories due to its
effectiveness. Typically, SBST techniques leverage heuristic search algorithms to explore the vast
test space by mutating already-generated tests with the guidance of maximizing code coverage.
While receiving extensive attention, they are still unable to reach specific parts of code. For in-
stance, they often fail to generate tests to cover the branches that can be triggered only by some
scenario-specific values that may require deep understanding of the code semantics.

The recent advancement of Large Language Models (LLMs) provides new opportunities for tack-
ling these problems, and several LLM-based techniques have been proposed to generate effective
test cases [35, 61]. These techniques utilize the code comprehension ability of LLMs by incorpo-
rating the source code of the target method to be tested and some contextual information (such
as other methods around the target method) into the prompt. While the limitation of SBST can be
relieved to some degree with the help of LLMs, the automatically generated tests still tend to be
generic and only able to cover the branches without complicated constraints [44]. That is, many
branches are still left for manual test design based on experts’ domain knowledge, leading to sig-
nificant costs. An automated approach that can further improve the coverage of these branches
can largely reduce the testing effort.

In practice, two major challenges stand out when creating such approaches. First, some branch
constraints involve objects with complex construction processes. Specifically, the construction
of some objects relies on other (complex) types of objects, ultimately necessitating a specific se-
quence of constructor invocations. For example, the branch condition at Line 5 in Figure 1 re-
quires a field object with a specific type (e.g., Array) and a specific attribute value (e.g., items
should be a (tuple, list) with the type typing.Union[Field, typing.Sequence[Field]]).
Constructing such a field object is challenging because it requires understanding the dependen-
cies between multiple objects: (1) constructing valid items (which must be either a single Field
object or a sequence of Field objects), and (2) creating a valid field object, ensuring that the
items attribute has the correct type. This process involves multiple steps and dependencies that
are difficult for existing techniques to handle without a deep understanding of the code seman-
tics. As indicated by a previous study [61], the tests generated by LLMs exhibit a relatively low
compilation success rate (about 39%), which directly impacts their effectiveness in achieving code
coverage. This highlights a deficiency in the ability of LLMs to generate effective tests in such sce-
narios. Indeed, state-of-the-art LLM-based techniques (e.g., CODAMOSA [35]) fail to produce valid
objects for such scenarios, let alone the objects with specific attribute values required by branch
constraints. Second, some branch constraints entail intricate inter-procedural dependencies. That
is, the outcome of certain conditions within the constraints are determined by the execution re-
sults of a series of method invocations. For instance, the branch condition at Line 3 in Figure 2
depends on the result of the method is_magic. This method is defined elsewhere in the project
and may invoke other methods, creating a chain of inter-procedural dependencies. To cover this
branch, the test must correctly simulate the action that is_magic performs and provide the test
data that satisfy the condition. This requires a deep understanding of the code semantics to en-
sure that the generated test accurately reflects the dependencies and produces the correct result
for the branch condition. In such scenarios, merely providing source code of the target method
or some coarse-grained contextual information (the common practice of existing LLM-based tech-
niques) is insufficient to enable LLMs to comprehend the semantics conveyed by a sequence of
invoked methods, thereby struggling to generate effective tests. Therefore, we define “hard-to-
cover branches” as those that meet either of the following criteria: (1) branches requiring values
derived from complex object construction. For example, if a branch condition checks whether an
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object’s attribute matches specific conditions (such as type, format, and other non-constant con-
ditions), the test must first construct the object with the appropriate attribute to cover the branch;
or (2) branches with complex inter-procedural dependencies. For example, if a branch condition
depends on the result of a method invocation, which itself relies on other method invocations,
the test must accurately simulate the sequence of method calls and their interactions to cover the
branch.

To tackle these challenges in covering hard-to-cover branches, we propose a novel LLM-based
test generation technique (called TELPA - TEst generation via LIm and Program Analysis), which
focuses on reaching hard-to-cover branches via program-analysis-enhanced prompting. Given that
complex objects in branch constraints are often passed to the target method as parameters, TELPA
addresses the first challenge by gathering invocations of the target method within the software
module. These existing invocations might contain the whole process of constructing these objects.
Specifically, TELPA conducts object construction analysis, which traces the sequence of method
calls leading to the target method, focusing on understanding how objects are constructed and
passed to the target method. This analysis starts from each invocation of the target method, to
extract all sequences of method invocations with the target method as the endpoint. Then, TELPA
prompts LLMs to generate tests by using different paths to enter the target method. By exploring
different entry paths, TELPA not only facilitates the construction of valid objects but also captures
various usage scenarios in practice (that may produce specific attribute values required by branch
constraints), thus enhancing test diversity and improving coverage.

To address the second challenge arising from complicated inter-procedural dependencies in
branch constraints, TELPA performs branch dependency analysis, which determines the meth-
ods invoked within the branch conditions of the target method, focusing on understanding the
inter-procedural dependencies that influence branch outcomes. This analysis begins from each
variable and invoked method in the constraints for a target branch, aiming to extract all associ-
ated methods. By incorporating the source code of these methods in their invocation order as the
prompt, TELPA can elicit LLMs to gain a deeper understanding of the semantics pertaining to
the target branch, thereby generating effective tests. This provides precise contextual information
concerning the target branch and it is more effective than directly supplying the source code of
all methods within the software module to LLMs, as the latter could introduce excessive noise
irrelevant to the target branch and confuse LLMs during test generation.

Due to the non-negligible cost of utilizing LLMs, we define the usage scenario of TELPA as its
activation when the existing (lightweight) test generation tool (e.g., Pynguin [39]) fails to increase
test coverage within a certain timeframe. In other words, TELPA is only employed for hard-to-
cover branches to ensure cost-effectiveness. To enhance efficiency further, TELPA samples a di-
verse set of already-generated tests as counter-examples. By incorporating these counter-examples
into the prompt, TELPA can instruct LLMs to generate tests that diverge from them, as these
counter-examples have been recognized as ineffective for these hard-to-cover branches. In partic-
ular, the overall test generation process with TELPA is structured as a feedback-based process. This
design allows for updating counter-examples based on the most recent coverage results, thereby
enhancing test generation effectiveness.

We conducted an extensive evaluation on 27 open-source Python projects, which have been
widely used in previous studies [35, 39]. Our results show that TELPA significantly outperforms
both the state-of-the-art SBST tool (i.e., Pynguin [39]) and the state-of-the-art LLM-based/LLM-
enhanced techniques (i.e., CODAMOSA [35] and CHATTESTER [61]). On average, TELPA achieves
34.10%, 25.93%, and 21.10% higher branch coverage than them respectively, given the same test-
ing time budget. Our ablation study also confirms the contribution of each main component in
TELPA, including object construction analysis for relieving the challenge arising from complex

, Vol. 1, No. 1, Article . Publication date: November 2018.



4 Chen Yang, Junjie Chen, Bin Lin, Ziqi Wang, and Jianyi Zhou

object construction, branch dependency analysis for relieving the challenge arising from intri-
cate inter-procedural dependencies, counter-examples sampling and coverage-based feedback for
improving the overall testing efficiency. Our investigation into various configurations of TELPA
confirms that our designed usage scenario for TELPA strikes a balance between effectiveness and
efficiency and TELPA consistently achieves higher coverage than other settings.

The main contributions of our study are as follows.

e We introduce TELPA, a novel LLM-based test generation technique designed to enhance the
coverage of hard-to-cover branches through program-analysis-enhanced prompting.

e TELPA can address the challenges arising from complex object construction and intricate
inter-procedural dependencies well by incorporating both object construction and branch
dependency analysis within TELPA.

o The feedback-based test generation process in TELPA improves the efficiency and effective-
ness of test generation by guiding LLMs with diverse counter-example tests.

e We present an extensive evaluation of TELPA across 27 open-source projects, demonstrating
its effectiveness in comparison to the state-of-the-art SBST tool and two state-of-the-art
LLM-based/LLM-enhanced techniques.

2 MOTIVATING EXAMPLE

In this section, we demonstrate the limitations of state-of-the-art automated test generation tools
for Python, namely Pynguin [39], CODAMOSA [35], and CHATTESTER [61] with two real exam-
ples to motivate our study.

Figure 1 shows the simplified code snippet of the target method set_definition from the
typesystem project!. With a time budget of 20 minutes, Pynguin, CODAMOSA, and CHATTESTER
all fail to reach line 6, namely the condition for the if statement in line 5 never returns true. In
fact, to make the condition true, the generated test needs to first construct an Array object (line 3),
and then assign a proper value to its items attribute. More specifically, items should be either a
tuple or a list of Field objects (line 4), according to the type hints from the constructor of Array
(line 13). Constructing such a sophisticated Array object is certainly challenging for automatic test
generation techniques, Pynguin, CODAMOSA, and CHATTESTER are no exception.

Another type of hard-to-cover branches are caused by complicated inter-procedural dependen-
cies, as illustrated in Figure 2. In this case, our target method is is_public_family from the apimd
project?. Pynguin, CODAMOSA, and CHATTESTER are unable to guide the condition in line 3 to
return true. The challenge here is that the outcome of the if condition depends on the method
is_magic, which is defined elsewhere in the project and might further invoke other methods.
Those complicated inter-procedural dependencies are often hard to understand and analyze for
test generation techniques.

According to our analysis, our evaluation benchmark, which consists of 486 modules from 27
Python projects, contains 6,559 branches, of which 3,979 (60.7%) are classified as hard-to-cover.
Similar challenges are also prevalent in Java, as evidenced by the Defects4] benchmark, which
contains 9,391 branches, of which 5,494 (58.5%) are hard-to-cover. This highlights the prevalence
of these challenges.

There are several reasons which might contribute to the inability of the state-of-the-art tech-
niques to handle branches with complex objects or inter-procedural dependencies.

First, during the test generation process, existing techniques [35, 39] normally try to construct
minimal or over-simplified objects, without taking into account the real usage scenarios involving

!https://github.com/encode/typesystem
Zhttps://github.com/KmolYuan/apimd
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def set_definitions(field, definitions) -> None:
<other code>

elif isinstance(field, Array):
if field.items is not None:
if isinstance(field.items, (tuple, list)):

<other code>
else:
<other code>

W 0 N O A WN P

<other code>

10 class Array(Field):

11 def __init__(

12 self,

13 items: typing.Union[Field, typing.Sequence[Field]] = None,
14 additional_items: typing.Union[Field, bool] = False,

15 <other code>

16 ) -> None:

Fig. 1. Target method set_definitions

def is_public_family(name: str, <other paramters>) -> bool:
for n in name.split("."):

if is_magic(n):

if n.startswith('_"):

1
2
3
4 <other code>
5
6 <other code>
7

return <return value>

8 def is_magic(name) -> bool:
9 name = name.rsplit('.', maxsplit=1)[-1]
10 return name[:2] == name[-2:] =="__"

Fig. 2. Target method _is_public_family

specific attributes. Second, for the inter-procedural dependencies, state-of-the-art techniques [35,
39] are not able to recursively analyze how dependent methods interact with variables from the
target method, thus failing to interpret the concrete branch constraints. Third, existing LLM-based
techniques [35, 61] typically provide either unnecessary or insufficient contexts for LLMs to gen-
erate tests. CODAMOSA provides the whole module as the context, where many parts of code are
irrelevant to the target method and thus introduce noise to LLMs. CHATTESTER provides the class
declaration, constructor signatures, relevant fields, and the target method as the context, which
misses the broader context dependent to the target method.

Based on these potential reasons behind the unsatisfactory performance of existing techniques,
we propose TELPA, an LLM-based test generation technique leveraging program-analysis-enhanced
prompting. TELPA will 1) conduct object construction analysis to learn real usage scenarios of ob-
jects and overcome the difficulty of constructing complex objects, 2) conduct branch dependency
analysis to understand the behavior of complicated inter-procedural dependencies, and 3) supply
relevant information to LLMs for test generation, avoiding imprecise context.
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Fig. 3. Overview of TELPA

3 APPROACH

The overall workflow of TELPA is illustrated in Figure 3. First, TELPA leverages existing test gen-
eration tools to generate a set of tests, which can reach those easy-to-cover branches. For ease
of presentation, we call this step preceding test generation. Then, for the methods containing the
branches that are still not covered, TELPA performs two types of program analyses: 1) object con-
struction analysis: This analysis traces backward from the target method to identify sequences of
method calls that lead to the construction of objects used as parameters. By capturing real usage
scenarios, this analysis helps the LLM generate tests that construct valid objects with the necessary
attributes; 2) branch dependency analysis: This analysis explores forward from the branch condi-
tions of the target method to identify all methods that influence the outcome of the conditions. By
providing precise contextual information about these dependencies, this analysis enables the LLM
to generate tests that effectively cover hard-to-reach branches. To improve the testing efficiency,
TELPA samples existing generated tests as counter-examples to guide LLMs to generate different
tests, as they are shown ineffective to cover specific branches. These counter-examples, together
with the program analysis results, are incorporated into the prompt for LLMs to generate new
tests. The new tests will be executed and added into existing tests for future iterations. In the fol-
lowing, we will introduce TELPA in detail by using the example shown in Figure 4 for facilitating
illustration.

3.1 Preceding Test Generation with Existing Tools

As our goal is to reach those hard-to-cover branches, TELPA uses existing test generation tools for
the initial testing task (for those easy-to-cover branches). This helps improve the cost-effectiveness
of the overall testing process due to the cost of utilizing LLMs. Specifically, for a project under
test, TELPA runs an existing test generation tool until it is unable to cover new branches within
a pre-defined timeframe. Following previous work [35], we conducted a pilot study on a small
benchmark and then set the timeframe to 2 minutes based on the observed results in TELPA.
When executing these generated tests, their corresponding coverage information is also recorded.
In this section, we mainly describe the idea behind TELPA, and the implementation details will be
presented in Section 4.1.1.
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<irrelevant code>
class Class1():
def dependent_methodO(self, param):
<other code>

def dependent_method1(self):
<other code>

def method1(self):
var0 = dependent_method1()

if var0 and dependent_method0(var0):
<other code>

class Class2():
def method3(self):
<other code>
objl.method1()
objl.method2()
<irrelevant code>

Fig. 4. lllustrative Example

3.2 Method-Invocation Analyses

TELPA first collects the methods containing branches not covered by the preceding testing process,
and then performs method invocation analyses on these methods to gather information needed
for handling complex object construction and inter-procedural dependencies. This process is done
in ascending order of coverage achieved for the methods, as we assume that methods with the
lower coverage are more difficult to tackle and there is larger room for coverage improvement.
Unlike existing LLM-based techniques (e.g., CODAMOSA [35]) that try to incorporate as much
source code from the module as possible into prompts, we will only feed LLMs with the methods
retrieved from method-invocation analyses as the context in order to reduce noise introduced by
irrelevant code and alleviate computational burden of LLMs.

3.2.1 Object Construction Analysis. The goal of the object construction analysis is to extract method-
invocation sequences ending with the target method. These sequences represent diverse real usage
scenarios of the target method in the project and have a high chance to capture the whole process
of constructing objects used in the target method. For example, a method vy may create an object

o and invoke the target method v with o as an argument. A object construction analysis could
collect the invocation sequence vy —v and trace back to the object construction process.

To achieve this goal, TELPA first constructs a method call graph within the module hosting
the target method, and then extracts all paths terminating at the target method as the method
invocation sequences.

Call Graph Construction. TELPA constructs a directed call graph to model method invocation
relationships within the module containing the target method. The nodes in the graph represent the
methods in the module, and the edges represent invocation relationships between pairs of methods.
Figure 5 illustrates a simplified version of the code shown in Figure 4 and the constructed call graph.
Given the simplified code snippet, the call graph will contain nodes method1 (denoted by v;) and
method?2 (denoted by v;) from Class1, and method3 (denoted by v3) from Class2. Clearly, v; is
called by v, and vs, while v, is only called by vs.
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class Class1():
def method1(self, example_obj):
var0 = dependent_method1()

if var0 and dependent_methodO(var0) \ method2
and example_obj.field.id > 3:

<other code> v,
1%

def method2(self): !

method1()
. Sequences of method1
. — Invocation
class Class2():

def method3(self): sequence 1 | Sequence 2
<other code> V; -V
tmp_obj = TmpObj(id = 5) -=«= Sequence 2
example_obj = ExampleObij(field = tmp_obj) | | s Sequence 3
objjl.methodl(example_obj) Sequence 3 /A
objl.method2()

Fig. 5. Example of object construction analysis

class Class1(): Involved methods

def dependent_methodO(self, param): dependent_methodo()
<other code> -

Involved variables
def dependent_method1(self):

<other code>

var0

dependent_method1()
def method1(self):

var0 = dependent_method1() Associated methods

if var0 and dependent_method0O(var0): | dependent_method0()

<other code> dependent_method1()

Fig. 6. Example of branch dependency analysis

Sequence Extraction. With the directed call graph, TELPA proceeds to extract sequences of
method invocations for the target method. Specifically, Depth-First Search (DFS) is used to iden-
tify all paths starting from entry nodes and terminating at the target method. If a cycle is encoun-
tered during path extraction, the traversal of that path will stop to prevent creating infinite paths.
Going back to the example in Figure 5, for the target method v, three paths will be extracted:
p1={vs = v > v1}, p2 = {v3 = v1} and p3 = {v1}.

To alleviate computational load, only the shortest path from each entry point to the target
method is retained. This strategy is used as such shorter and more direct call paths are easier for
LLMs to understand and learn from. In our example, the path p; is selected (that is, p; is filtered
out).

3.2.2 Branch Dependency Analysis. As illustrated in Section 2, it is challenging for test generation
techniques to reach certain branches when the outcome of the branch condition depends on other
invoked methods. To address it, TELPA performs a branch dependency analysis to recursively
collect all methods that might be relevant to determining which branch to execute. The extracted
methods provide rich information for interpreting what really entails in branch conditions. Below,
we describe the process in detail with the example presented in Figure 6.
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To extract the set of associated methods B, for a target method v; (method1 in Figure 6), TELPA
first identifies branch conditions and captures all variables (var@) and methods (dependent_method@)
that these condition expressions contain. All involved methods (dependent_method®) are added
to B,. For each involved variable, TELPA recursively extracts relevant assignment statements. In
our example, the value of var@ is determined by dependent_method1. Therefore, TELPA considers
dependent_method1 is relevant to vare and adds the involved methods (dependent_method1) to
B,. In this way, all methods that can impact the outcome of branch conditions are retrieved and a
precise search scope is identified to understand the behavior of condition expressions.

Note that TELPA does not always use both branch dependency analysis and object construction
analysis simultaneously. Specifically, it applies these analyses selectively based on the character-
istics of the target method. Branch dependency analysis is used when the target method involves
intricate inter-procedural dependencies in branch conditions, and object construction analyses is
used when the target method involves complex objects in branch conditions. If the target method
involves both complex objects and inter-procedural dependencies, TELPA applies both analyses
to address these challenges comprehensively. For the simpler cases where the target method does
not involve complex objects and inter-procedural dependencies, TELPA provides the method un-
der test itself as its context to the LLM, like the existing LLM-based approaches (such as CHAT-
TESTER). This ensures that TELPA remains effective for such cases.

3.3 Counter-Examples Sampling

With the preceding testing process described in Section 3.1, we have acquired a set of tests that
fail to reach specific hard-to-cover branches. These existing tests can be used as counter-examples
to guide LLMs to generate divergent tests, further enhancing the overall test efficiency. However,
incorporating all existing generated tests into the prompt is impractical, which will not only im-
pose significant computational burden on LLMs but also easily exceed the input length limit of the
prompt. To mitigate this, TELPA samples a diverse set of counter-example tests, striking a balance
between effectiveness and efficiency. As our goal is to reach hard-to-cover branches, it is essential
to let LLM understand which branches have already been covered by existing tests. Meanwhile, as
mentioned before, we want to have a small (preferably minimal) set of tests as counter-examples.

To achieve this, TELPA employs a coverage-based approach. For each method invocation se-
quence of a target method v obtained from the object construction analysis, TELPA collects all the
existing tests that invoke the first method of the sequence (denoted by vy) as the candidate tests
(denoted by 7,). We only consider the first method of the sequence as it will in the end propagate
to the target method through the chain of method calls. From 7,,, TELPA first selects the test that
achieves the highest coverage for the target method v, then picks the next tests that can achieve the
highest incremental coverage. This is an iterative process until no more test can increase the cov-
erage. In this way, the minimal set of tests can be acquired to reach all already-covered branches.
Note that the counter-examples are constructed for each method invocation sequence, this is be-
cause in the later stage of test generation, each time we will only feed one method invocation
sequence to the LLM to alleviate the computational load and avoid exceeding the input length
limit.

3.4 Feedback-based Test Generation Process with LLMs

TELPA integrates program analysis results and counter-examples into prompts for the LLM to gen-
erate new tests. Previous studies have shown large performance improvement for LLMs through
Chain-of-Thought (CoT) [55, 62]. Therefore, we also adopt a typical CoT strategy and divide the
process into two stages. Note that TELPA can also adopt different CoT techniques, as the contri-
bution of TELPA lies in improving the prompting approach instead of designing CoT techniques.
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Stage 1 Prompt Stage 1 Response

There is a python method ‘methodl’ in
module ‘example_module’.
The content of the module is

The functionality of methodl is ...

class Classl(): Stage 2 Prompt

<constructor>
def dependent_method@(self, param): {Stagel Prompt}
<other_code> {Stagel Response}
def dependent_method1(self): The test cases below are designed to test
<other_code> the method ‘methodl’. These
counter-examples enter the target method
def methodl(self): via the sequence ‘method3 —> methodl’.
var@ = dependent_method1() They can cover different part of the method.

The contents of the test cases are
if var@ and dependent_method@(varo): A
<other_code> def example_testl():
<other_code>
class Class2():
<constructor> def example_test2():
<other_code>
def method3(self):
<other_code> def example_test3():
objl.methodl1() <other_code>
objl.method2()

Please generate new test cases that cover
What is the functionality of the method? different scenarios or edge cases.

Fig. 7. Example of prompt construction

In the first stage, TELPA constructs the context of the target method v with two sources: 1)
methods in a selected method-invocation sequence from object construction analysis, and 2) the
associated methods from branch dependency analysis. For each method, TELPA incorporates the
declarations and constructors of their associated classes and the content of the method itself as
the context information. To select the method-invocation sequence for v in each iteration, TELPA
first uses the sequence p = {v} (i.e., the entry method is v itself), as this is the most straightfor-
ward sequence for the LLM to invoke and understand the semantics of . If this sequence does
not exist (e.g., the target method is not a public method), or the generated tests with it in the
second stage do not cover new branches (note that our testing process is iterative with feedback),
TELPA randomly selects an unused sequence. The context information is then fed to the LLM for
summarizing the functionality of v, enabling the LLM to gain contextual awareness of method se-
mantics. The test generation process for v terminates when no sequence is left. For example, given
method1 in Figure 4, if the selected sequence is p = v3 — v, the prompt will be constructed using
method3 from the object construction analysis, dependent_method0 and dependent_method1 from
the branch dependency analysis, and method]1 itself, as shown in Figure 7.

In the second stage, TELPA integrates the contents of the sampled counter-examples correspond-
ing to the method invocation sequence into the prompt, along with a description: “These counter-
examples enter the target method via the selected sequence of method invocations. They can cover
different parts of the method. Please generate new test cases that cover different scenarios or edge
cases. 7, as shown in Figure 7. Such a description can facilitate the understanding of the LLM on
the intent of the generation, namely to cover different branches in the target method following
the method invocation sequence. The LLM is then instructed to generate divergent tests.

The new test generated by the LLM is executed and added to the existing tests along with its
coverage information. The used counter-examples are removed from the candidates to ensure the
diversity in future counter-example selection. This type of feedback helps TELPA generate more
tests with different behaviors.
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4 EVALUATION

To evaluate the performance of TELPA, we formulate the following research questions (RQs).

e RQ1: To what extent can TELPA improve code coverage compared to the state-of-the-art tech-
niques?

RQ2: How does each of the main components in TELPA affect the performance?

e RQ3: How does the adoption of preceding test generation tools and LLMs impact the perfor-
mance of TELPA?

RQ4: How is the correctness of the unit tests generated by TELPA?

RQ5: How generalizable is TELPA?

4.1 Experimental Setup

4.1.1 Implementation of TELPA. While TELPA is not limited to specific programming languages,
in this experiment, we target test generation for Python programs in RQ1-RQ4, given the popular-
ity of Python and the existing Python benchmarks [35]. Additionally, we adapted TELPA to Java
to evaluate its generalizability in RQ5.

Regarding the Python version of TELPA, to construct the call graph, we rely on PyCG [45], a
state-of-the-art call graph generator for Python. PyCG provides a robust foundation for identify-
ing method invocation relationships within the code. PyCG constructs an assignment graph that
tracks the assignment relations between program identifiers, such as variables and classes. Fur-
thermore, it uses namespace and scope resolution to distinguish between methods with the same
name in different classes. To better align with TELPA’s requirements for sequence extraction and
prompt construction, we map the nodes in the PyCG-extracted call graph back to the correspond-
ing AST nodes parsed using Python’s AST module. Since TELPA focuses on generating tests for the
target module, we primarily consider method invocations within the module under test. External
functions (e.g., those from imported libraries) are not further analyzed for sequence extraction, as
their internal implementations are outside the scope of the target module. For coverage analysis,
TELPA uses coverage.py [2], a widely-used tool for measuring code coverage in Python programs.
The LLM Phind-CodeLlama-34B-v2 [11] from Hugging Face [5] is employed for test generation
by default, as it is one of the most effective open-source code LLMs according to the LLM leader-
board maintained by Hugging Face [7]. PyTorch 1.13 [12], Hugging Face Transformers 4.35.2 [13],
and fastchat 0.2.30 [4] are used to run the LLM locally. Following the existing work [57, 59], we
set the temperature to 0, enabling TELPA to obtain more deterministic results from the LLM.

To reduce the resource consumption, TELPA uses state-of-the-art techniques for initial test gen-
eration. In our study, we adopted two test generation tools separately: a state-of-the-art SBST tool
Pynguin [39] and a state-of-the-art LLM-enhanced technique CODAMOSA [35]. That is, we con-
structed two instances of TELPA: Pynguin-based TELPA, and CODAMOSA-based TELPA,. The
adoption of these two different types of preceding test generation techniques ensures the con-
clusion generalizability. More information regarding Pynguin and CODAMOSA will be given in
Section 4.1.2.

Specifically, to answer RQ5, we adapted TELPA to Java. Note that although TELPA is in theory
language-independent, it still requires engineering efforts as the analysis and the parsing of test
cases are highly specific to the chosen frameworks. Thus we made the engineering effort to extend
TELPA to support Java projects. Specifically, we adapted TELPA’s program analysis components
to work with Java code by incorporating JavaParser [9], allowing to effectively parse Java code. We
also implemented the test execution process using the JUnit framework (the standard framework
for unit testing in Java) and incorporated Jacoco [8] for code coverage analysis (a widely-used tool
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for measuring Java code coverage). Additionally, we modified the processing of the LLM’s output
to extract Java tests and address potential issues such as missing external libraries.

Similarly, to reduce resource consumption, TELPA leverages the state-of-the-art search-based
test generation tool for Java (i.e., EvoSuite [30]) for preceding test generation. Specifically, EvoSuite
is used to generate initial tests, when EvoSuite no longer improves coverage within a set time
window, TELPA is activated, takes over the test generation process entirely and leverages EvoSuite-
generated tests as counter-examples. The LLM is used in the same way as the Python version of
TELPA.

As mentioned before, TELPA is activated when the preceding tool fails to increase coverage
within a pre-defined timeframe. As previous work [35], we conducted a pilot study on a small test
benchmark to optimize the performance of TELPA. The timeframe is set to 2 minutes based on the
observed results, namely TELPA will take over the test generation task if Pynguin, CODAMOSA
or EvoSuite cannot increase the coverage for two minutes. This choice is further discussed in
Section 4.7.

4.1.2  Baselines for RQ1 and RQ4. To answer RQ1 and RQ4, we compared TELPA with three base-
lines: Pynguin, CODAMOSA, and CHATTESTER.

Pynguin [39] is the state-of-the-art SBST tool for Python. It initiates the testing process by taking
the Python code under test as input, and employs search-based algorithms (including MIO [19, 20],
MOSA [41], and DynaMOSA [41]) to generate new tests by mutating values and statements of a
seed test. Here, we used Pynguin 0.19.0 with DynaMOSA as this algorithm has been demonstrated
to be the most effective one among all supported algorithms in Pynguin [39].

CODAMOSA [35] is the state-of-the-art LLM-based test generation tool, which was proposed
for improving SBST techniques. It prompts LLMs to generate seed tests for Pynguin in order to
help SBST escape the local optimum. More specifically, when Pynguin falls into the local optimum,
CODAMOSA switches to invoke LLMs to generate new seed tests by incorporating as much source
code of the module under test into the prompt as possible, and then switches back to Pynguin for
running on these new seed tests, until the given testing budget is reached. Specifically, we con-
sider CODAMOSA as an integral tool integrating both Pynguin and the LLM, and then incorporate
it into the preceding test generation component of TELPA. In the case of using CODAMOSA as
the preceding test generation tool, when the switch (between Pynguin and the LLM) within CO-
DAMOSA does not improve the coverage any more within the given timeframe (exceeding the
switching time used within CODAMOSA), TELPA makes CODAMOSA terminate and then acti-
vates its program-analysis-enhanced LLM-based test generation component for further coverage
improvement. CODAMOSA originally employed Codex as the LLM for generating seed tests. How-
ever, as the Codex service has been shut down [1], we employed Phind-CodeLlama-34B-v2 as the
LLM for CODAMOSA to have a fair comparison with our technique. We call it CODAMOSAP™,

CHATTESTER [61] is another state-of-the-art LLM-based test generation tool, which first ex-
tracts context information for ChatGPT to generate tests and then designs post-processing strate-
gies to fix invalid tests. The main contribution of TELPA is the novel prompting method. Unlike
CODAMOSAPY that incorporates as much source code of the module under test as possible for
prompting, or CHATTESTER that incorporates insufficient context for prompting, TELPA feeds
the code information highly relevant to branch constraints to LLMs. However, CODAMOSAPh!
and TELPA differ in both their LLM invocation workflows and their prompting methods. Specif-
ically, CODAMOSAP" iteratively switches between the search-based tool Pynguin and the LLM,
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while once TELPA switches, it does not revert back to the preceding tool. That is, TELPA con-
tinues to use the LLM with its program-analysis-enhanced prompting for subsequent test gen-
eration. Additionally, CODAMOSAPM uses a simple prompting method by incorporating the en-
tire module’s source code as context for the LLM. TELPA introduces a novel prompting method
that leverages program analysis to provide precise and relevant context for the LLM. Therefore,
the comparison with the LLM-enhanced CODAMOSAPM cannot clearly demonstrate the impact
of this new prompting method due to the different LLM invocation workflows. Therefore, we
used CHATTESTER as another LLM-based baseline. To highlight the effectiveness of advanced
prompting methods for test generation, we directly replaced our novel prompting method with
the one used by CHATTESTER and removed the post-processing strategy from CHATTESTER.
Note that this component is orthogonal to the test generation process and can be also applied to
TELPA. That is, we activated the prompting method of CHATTESTER for test generation when
the preceding test generation tool reaches a coverage plateau, same as the workflow of TELPA.

CHATTESTER originally employed ChatGPT as the LLM for generating tests, we replaced it with
Phind-CodeLlama-34B-v2 for fair comparison. We call it CHATTESTERPY, Since both Pynguin
and CODAMOSAPY are used as preceding test generation tools in our study, we also created two

instances of CHATTESTER for comparisons: Pynguin-based CHATTESTEREhi and CODAMOSA-

based CHATTESTER?". ‘
To sum up, we have two sets of comparisons: 1) TELPA,, vs. Pynguin vs. CHATTESTERE,hI and 2)

TELPA, vs. CODAMOSAPY vs, CHATTESTERE}“. These comparisons aim to investigate whether
TELPA can improve the existing test generation tools (Pynguin and CODAMOSAPM) and exam-
ine whether our novel prompting method can outperform the state-of-the-art prompting method
proposed by CHATTESTER regardless of the preceding test generation tools.

4.1.3 \Variants for RQ2. To answer RQ2, we constructed seven variants of TELPA for the ablation
experiment to investigate the contribution of each component in TELPA :

e TELPA,;, that removes the object construction analysis from TELPA;

e TELPA,f, that removes the branch dependency analysis from TELPA;

o TELPA,,. that removes the counter-example guidance from TELPA;

e TELPA,,. that randomly selects the same number of counter-examples instead of coverage-
based sampling in TELPA;

e TELPA,sthat removes the feedback process from TELPA. Specifically, the newly generated
tests by the LLM, along with their coverage information, will not be added to the pool of
existing tests by TELPA

e TELPA,,,;r that removes the path filtering process from TELPA. Specifically, instead of con-
densing the sequences with the same entry and ending method, we keep all sequences.

e TELPA,,.o that removes the functionality summarization process from TELPA.

Similar to RQ1, we constructed two sets of variants based on the preceding test generation tool:
Pynguin-based variants (TELPA?,  TELPA? A TELPA,, TELPAY,, TELPA? ' TELPA?  TELPA]_):

)i
pf’ ncot
and CODAMOSA-based variants (TELPA®, , TELPA® ., TELPA(,,, TELPAS,,, TELPAC , TELPAS
TELPAS

c
nf’ pf
ncot)'

4.1.4  Variants for RQ3. TELPA is built on top of the adopted preceding test generation tools and
LLM. To better understand how this design choice will impact the performance of TELPA, in this
RQ, we construct another two variants. In the first variant, named TELPA ;¢ q¢ch, N0 preceding test
generation tool is used. That is, TELPA is activated from the very beginning. In the second variant,
we consider a different LLM. The default LLM in TELPA is Phind-CodeLlama-34B-v2, which is
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relatively large-scale and may require a lot of resources to run. To make TELPA more practical,
we also investigated the effectiveness of TELPA when a relatively small-scale LLM is adopted.
More specifically, we employed DeepSeek-Coder-6.7B-instruct [3], which is one of the most effective
LLMs among the set of LLMs with comparable (small) scales on HuggingFace according to the LLM
leaderboard maintained by Hugging Face [7]. Accordingly, we call the variant TELPA 4. Similar
to previous RQs, Pynguin-based and CODAMOSAP"-based variants are created and named as
’I‘ELPAZs and TELPA, . Furthermore, the commercial closed-source LLMs developed by OpenAl,
such as ChatGPT and GPT-4, have shown superior performance on various benchmarks. Therefore,
in addition to open-source LLMs, we also conducted an experiment to understand the effectiveness
of TELPA when using the more advanced GPT-4. Due to the high cost of invoking GPT-4’s APIs,

we only constructed a Pynguin-based variant, i.e., TELPAgpt.

4.1.5 Baseline for RQ5. To answer RQ5, we adapted TELPA to Java and constructed TELPA,,
which leverages the state-of-the-art search-based test generation tool for Java (i.e., EvoSuite [30])
for preceding test generation and compared it with EvoSuite.

EvoSuite is one of the most prominent search-based techniques. It employs evolutionary al-
gorithms to generate unit tests aimed at maximizing code coverage. Additionally, it integrates
advanced program analysis techniques to further enhance its effectiveness, including leveraging
a constant pool for generating test inputs and applying testability transformations to improve
guidance during the test generation process, etc.

4.1.6  Benchmark, Metrics, and Environment. To answer RQ1-RQ4, following the existing work [35],
we evaluated TELPA on the widely-studied benchmark, which consists of 486 modules from 27
Python projects. The whole benchmark contains 42,897 source lines of code and 4,518 methods in
total. Since TELPA focuses on improving coverage for hard-to-cover branches, we also analyzed
the branches within the benchmark. The benchmark contains a total of 6,559 branches, of which
3,979 are classified as hard-to-cover. Specifically, 3,931 branches involve complex dependencies,
while 256 branches are associated with complex objects.

To answer RQ5, we further evaluated TELPA on four real-world open-source projects using the
JUnit framework [10] in the widely-used Defects4] benchmark [33] due to the significant popular-
ity of Java and JUnit (i.e., Chart, Time, Lang, and Math). Unlike Python, Java is a statically typed
language. Automated test case generation for dynamically typed languages often struggles with
object creation, as obtaining detailed type information can be challenging. In contrast, Java’s static
typing allows for more precise and efficient handling of type information, making it an ideal choice
for evaluating the effectiveness of TELPA on static type systems. Here, we excluded Closure since
it does not use the JUnit framework and involves significant testing costs. In total, the benchmark
contains 9,391 branches, of which 5,494 are classified as hard-to-cover. Specifically, 2,453 branches
involve complex dependencies, while 4,842 branches are associated with complex objects.

Following the existing work on test generation [35, 39], we adopted both branch coverage and
line coverage as metrics to measure the effectiveness of a test generation technique. Specifically,
to evaluate the correctness of the generated tests cases in RQ4, we executed all generated test cases
and measure the correctness using two metrics: (1) Syntax Correctness refers to the percentage of
generated tests that are syntactically valid. Specifically, we checked this by parsing the generated
tests using Python’s built-in ast module. Any test that passed parsing without errors was consid-
ered syntactically correct. (2) Execution Pass Rate refers to the percentage of generated tests that
executed successfully without runtime errors. Specifically, we ran the tests and recorded any run-
time errors or failures during execution. For each module and each technique in a project, we
allocated 20 minutes for test generation. All the techniques kept running until the time budget ran
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Table 1. Comparison among TELPA, CHATTESTER, Pynguin and CODAMOSA in terms of branch coverage
on all branches

Project Pynguing, Pynguin CHATTESTER}Z"i TELPA, CODAMOSAg:i CODAMOSAPM CHATTESTER?™ TELPA,
pysnooper 16.67%  18.07% 20.00% 31.23% 16.67% 18.25% 27.37% 30.70%
apimd 39.63%  43.18% 48.04% 81.50% 6.92% 39.81% 51.78% 67.94%
blib2to3 2355%  26.09% 25.18% 42.39% 19.59% 25.58% 30.66% 38.78%
codetiming 65.00%  75.00% 80.00%  95.00% 70.00% 70.00% 60.00% 95.00%
cookiecutter 4537%  54.15% 63.90% 64.63% 45.37% 57.80% 52.44%  67.07%
dataclasses_json 1611%  1637% 21.77%  27.96% 17.17% 17.61% 17.17%  28.94%
docstring_parser 43.58% 53.77% 72.64% 85.85% 83.77% 86.04% 89.62% 91.13%
flutes 68.61%  77.22% 81.94% 84.17% 68.06% 76.67% 76.11%  82.50%
flutils 46.52%  47.41% 59.70%  78.89% 66.22% 66.74% 67.26% 78.00%
httpie 28.14%  29.79% 38.35%  45.52% 26.49% 27.11% 40.05% 44.90%
isort 94.00%  99.00% 98.00% 100.00% 94.00% 98.00% 94.00% 98.00%
mimesis 76.97%  80.42% 80.25% 89.75% 68.57% 79.58% 83.45% 89.66%
py_backwards 28.62%  42.00% 50.00% 63.69% 31.69% 36.00% 33.23% 60.31%
pymonet 62.67%  65.33% 68.00% 85.33% 61.33% 63.33% 71.56% 88.22%
pypara 44.13%  56.35% 47.14%  63.97% 18.41% 48.57% 34.13% 56.51%
semantic_release 37.50% 38.33% 45.56% 60.28% 37.22% 37.22% 39.72% 60.00%
string_utils 83.75%  85.62% 93.12% 97.97% 64.84% 80.62% 85.31% 87.97%
pytutils 35.95%  37.03% 50.95% 57.57% 41.08% 45.14% 43.92% 57.57%
sanic 44.56%  44.91% 59.65% 63.07% 46.23% 48.60% 51.58% 59.91%
sty 87.14%  90.00% 91.43% 95.71% 90.00% 93.57% 89.29% 95.00%
thefuck 19.88%  20.71% 21.07% 50.60% 21.90% 23.45% 38.69% 54.17%
thonny 17.35%  36.63% 34.58% 38.31% 27.11% 36.51% 37.95% 43.13%
tornado 46.30%  47.89% 55.75%  65.36% 42.79% 44.05% 51.20% 65.61%
tqdm 15.00%  18.48% 40.45%  44.70% 35.30% 42.12% 38.33% 49.24%
typesystem 33.08%  37.50% 39.46% 50.87% 20.94% 56.09% 57.32% 72.54%
youtube_dl 15.28%  16.97% 19.46% 25.03% 20.70% 23.57% 2456% 29.01%
ansible 28.00%  29.86% 30.88%  38.02% 29.73% 31.38% 30.76% 37.78%
Average Branch Cov. 43.09% 47.71% 53.23% 63.98% 43.41% 50.87% 52.50% 64.06%
Average Line Cov. 62.36%  64.72% 70.20%  75.54% 58.37% 67.92% 72.64%  74.25%

out, even if the coverage did not grow before that. Note that the time costs spent on all compo-
nents in TELPA (including the preceding test generation, program analysis, test generation, and
the coverage analysis) were included in this time budget. The 20-minute time budget was selected
to ensure that all the studied techniques have sufficient time to explore the test space and demon-
strate their potential as much as possible. While the previous studies set shorter time budgets for
evaluation (e.g., 10 minutes for evaluating Pynguin and CODAMOSA), a longer time budget is
helpful to assess the sustained effectiveness of each technique over a sufficient period.

To avoid the influence of randomness, we repeated our experiments for 20 times considering the
evaluation cost and used the average value of the final results. The experiments were conducted
on a workstation with 128-core CPU, 504G memory, 4 NVIDIA A100 GPUs, and Ubuntu 20.04 OS.

We released our implementation and all experimental data at the project homepage [14] to
facilitate replication, future research, and practical use.

4.2 RQ1: Effectiveness of TELPA
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Table 2. Comparison among TELPA, CHATTESTERP", Pynguin and CODAMOSAP! in terms of branch cov-
erage on different types of branches

Branch Type ‘ Pynguiny, Pynguin CHATTESTERE™ TELPA, ‘ CODAMOSA®™ CODAMOSAP™ CHATTESTER?™ TELPA,
Easy-to-cover ‘ 64.50% 72.51% 77.17%  78.84% ‘ 73.10% 78.18% 80.65%  82.32%
Branches with complex dependencies 29.00% 31.16% 32.15%  39.10% 18.75% 20.17% 28.80%  34.90%
Hard-to-cover
Branches with complex objects 52.73%  57.03% 58.98%  63.67% 39.06% 42.97% 53.90%  58.59%

All hard-to-cover branches

. 29.20% 31.62% 32.67%  39.53% 19.13% 20.58% 29.10%  35.23%
(union of the above two types)
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Fig. 8. Branch coverage trend

The goal of TELPA is to reach hard-to-cover branches, and this RQ verifies its ability in this re-
gard. Table 1 presents the comparison results for TELPA,, vs. Pynguin vs. CHATTESTERE,hl and

TELPA, vs. CODAMOSAPH vs, CHA’I'TESTEREhi on each project in terms of branch coverage. To
gain a better understanding of the performance of the preceding test generation step, we also show
the branch coverage achieved by Pynguin and CODAMOSAP! right before switching to LLMs in
“Pynguiny,” and “CODAMOSAIZI:” columns?®, respectively. The last two rows present the average
branch coverage and line coverage across all projects. Due to the space limit, we do not show the
line coverage for each project but instead include these detailed results in our replication pack-
age [14]. To provide a clearer comparison of those techniques on hard-to-cover branches, Table 2
specifically shows the branch coverage achieved by each technique on different types of branches.

To better understand the effectiveness of TELPA,, and TELPA,, we also measured the time spent
on running Pynguin and CODAMOSAP before switching to LLMs. On average across all projects,
Pynguin and CODAMOSAP ran for 2.39 and 3.47 minutes, respectively, before switching. That s,
TELPA is activated at an early stage of the entire testing process (given a time budget of 20 minutes)
regardless of taking Pynguin or CODAMOSAPY as the preceding test generation tool. When com-
paring Pynguiny,, Pynguin, CODAMOSAIZEI, and CODAMOSAP!, from Table 1, we found that on
average, Pynguin achieves a branch coverage of 43.09% within only 2.39 minutes, but just achieves
47.71% coverage after continuing running for 17.61 minutes. Similarly, CODAMOSAP" achieves
43.41% branch coverage within only 3.47 minutes, but in the end just achieves 50.87% coverage af-
ter continuing running for 16.53 minutes. From Table 2, this trend is consistent for hard-to-cover

3Here, “bn” represents “bottleneck”.
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branches as well, where Pynguin and CODAMOSAP™ quickly encounter bottlenecks in achieving
further coverage improvements on hard-to-cover branches within a short time period. Figure 8
shows the branch-coverage trend achieved by TELPA,, Pynguin, TELPA., and CODAMOSAPH,
From this figure, Pynguin and CODAMOSAP™ can quickly cover easily reachable branches, and
then encounter the coverage bottleneck to some degree, while TELPA, and TELPA, continue to
achieve new coverage. This highlights the challenge posed by hard-to-cover branches and under-
scores the motivation behind our work. This also confirms that the two-minute timeframe set for
switching to LLMs is sufficient for Pynguin and CODAMOSAP", which can reflect their potential
in covering hard-to-cover branches to a large extent, as extending their running time does not
bring significant coverage improvement. Additionally, over the 20-minute period, TELPA’s cov-
erage continues to increase, though at a slower rate after the first 10 minutes, underscoring the
importance of sufficient testing time to fully harness the testing capabilities. In contrast, Pynguin
and CODAMOSAP" quickly plateau within the first few minutes, while TELPA steadily achieves
higher coverage. Notably, TELPA also surpasses both Pynguin and CODAMOSAPY within the
10-minute time budget, demonstrating its effectiveness.

Takeaway I: The state-of-the-art test generation methods (Pynguin and CODAMOSAPM)
encounter the bottleneck in coverage improvement at an early stage of testing, possibly
due to those hard-to-cover branches.

From Table 1, after switching to TELPA, the branch coverage can be significantly improved
according to results of TELPA, and TELPA,. Specifically, after reaching the testing time budget,
TELPA, achieves an average improvement of 34.10% over Pynguin across all projects in terms of
branch coverage, and TELPA, achieves an average improvement of 25.93% over CODAMOSAP,
In terms of line coverage, TELPA, achieves an average improvement of 16.72% over Pynguin and
TELPA, achieves an average improvement of 9.32% over CODAMOSAPM, Additionally, TELPA,
outperforms CODAMOSAP! in terms of both branch and line coverage. Specifically, TELPA,,
achieves an average branch coverage of 63.98% while CODAMOSAP" achieves an average branch
coverage of 50.87%. This also demonstrates the superiority of the prompting method and the test
generation process designed in TELPA. Regarding hard-to-cover branches, as shown in Table 2,
both TELPA, and TELPA, outperform Pynguin and CODAMOSAPM on both scenarios, includ-
ing those with complex dependencies and those with complex objects. For example, TELPA,
covers 39.53% hard-to-cover branches, outperforming Pynguin, which covers 31.62% branches
with an improvement of 25.02%. Similarly, TELPA, covers 35.23% hard-to-cover branches, com-
pared to CODAMOSAP"’s 20.58% branches, achieving an improvement of 71.18%. Furthermore,
we conducted a paired Wilcoxon signed-rank test [56] at a significance level of 0.05 between
TELPA,/TELPA, and Pynguin/CODAMOSAPY, confirming TELPA’s statistical superiority over
the two state-of-the-art methods with all p-values below 0.05.

Regardless of the preceding test generation tools (Pynguin or CODAMOSAPM), TELPA can
achieve similar effectiveness, i.e., TELPA, achieves similar branch coverage and line coverage to
TELPA. on average across all projects. The results demonstrate the stable effectiveness of TELPA.
We conducted a paired Wilcoxon signed-rank test [56] at a significance level of 0.05 between
TELPA, and TELPA, in terms of both branch coverage and line coverage. Both p-values exceed
0.05, demonstrating no statistically significant difference between TELPA, and TELPA_ in improv-
ing coverage.
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Takeaway II: TELPA significantly outperforms the state-of-the-art Pynguin and
CODAMOSAPM in improving both branch coverage and line coverage, regardless of the
used preceding test generation tools.

Compared to Pynguin, all the LLM-based/LLM-enhanced techniques (including TELPA,,, TELPA,

CHATTESTER;;‘“, CHATTESTER?™, CODAMOSAP!) achieve higher branch coverage and line
coverage on average across all projects. This demonstrates the effectiveness of LLMs in improving
test coverage. However, different prompting methods can largely affect the effectiveness of LLMs.
By comparing TELPA,/TELPA, with CHATTESTERf,h‘/CHATTESTEREh‘, our designed prompt-
ing method specific to the challenge posed by hard-to-cover branches performs much better than
the general prompting method employed for LLM-based test generation. Specifically, the average

improvement of TELPA, over CHATTESTER}';hi is 20.19% in terms of branch coverage and 7.61%

in terms of line coverage. Similarly, the average improvement of TELPA, over CHATTESTEREhi

is 22.02% in terms of branch coverage and 2.22% in terms of line coverage. The improvement is also
consistent on hard-to-cover branches. Specifically, the improvement of TELPA,, over CHATTESTERZhl
is 21.00% and the improvement of TELPA. over CHATTESTERIC)hi is 21.06% on hard-to-cover branches.
This implies the importance of designing task-specific prompting, i.e., extracting relevant infor-
mation for improving the coverage of hard-to-cover branches in TELPA. We conducted a paired
Wilcoxon signed-rank test [56] at a significance level of 0.05 and found that TELPA,/TELPA, sig-
nificantly outperforms CHATTESTERf,hl/ CHATTESTERICJ}H by obtaining all p-values smaller than
0.05.

Takeaway III: Incorporating LLMs into test generation helps improve test coverage com-
pared to traditional SBST. Designing task-specific prompting (the one in TELPA specific
to hard-to-cover branches) can further improve the effectiveness of LLM-based test gener-
ation compared to general prompting.

To gain deeper insights into the specific branches covered by each method, we analyzed the
overlap in covered branches across different methods, as visualized in Figure 9. The figure demon-
strates that all studied techniques perform well on easy-to-cover branches. However, TELPA not
only covers nearly all the hard-to-cover branches covered by other methods but also covers a
significant number of unique hard-to-cover branches. This underscores TELPA’s contribution to
enhancing coverage of hard-to-cover branches and complementing existing methods.

Takeaway IV: TELPA excels in covering hard-to-cover branches, including those missed
by other methods, which highlights its potential to complement existing test generation
techniques.

4.3 RQ2: Contribution of Each Component in TELPA

To investigate the contribution of each component in TELPA, we compared TELPA with a set
of its variants (introduced in Section 4.1.3). Table 3 presents the comparison results in terms of
average branch coverage and average line coverage across all the projects. As can be seen from Ta-
ble 3, both TELPA,, and TELPA, perform better than their corresponding variants. We further per-
formed a paired Wilcoxon signed-rank test at the significance level of 0.05 to investigate whether
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Pynguin
15 0
1201
42 64
266
TELPA,

CHATTESTERSM CODAMOSAPM

35 3

CHATTESTEREH

815
1 347

239

TELPA.

(a) Hard-to-cover branches covered by TELPA,, (b) Hard-to-cover branches covered by TELPA,,
CHATTESTERD", and Pynguin CHATTESTERE™, and CODAMOSAPh!

Pynguin CHATTESTER" CODAMOSAPH CHATTESTERRN
12 0 65 10 0 57
1842 1993
17 84 14 31
91 86
TELPA, TELPA.

(c) Easy-to-cover branches covered by TELPA,, (d) Easy-to-cover branches covered by TELPA,,
CHATTESTER';,“‘, and Pynguin CHATTESTERE™, and CODAMOSAPh!

Fig. 9. Different branches covered by different techniques

Table 3. Comparison between TELPA and its variants in terms of branch and line coverage on average across
all the projects

Cov. ‘TELPA{’M TELPA!  TELPA], TELPA] TELPA}, TELPA] . TELPA] , TELPA,
Branch Cov.|  5587%  5874%  5517%  5834%  58.69%  52.80%  59.84% 63.98%
Line Cov. 70.67% 71.80% 70.46% 71.65% 71.07% 69.17% 72.29%  75.54%
Cov. ‘TELPA; sa TELPAS, TELPA;, TELPA! TELPAf, TELPA! . TELPA;, TELPA
Branch Cov.|  56.68%  6045%  56.12%  57.77%  57.32%  48.89%  60.12% 64.06%
Line Cov. 72.52% 73.78% 72.24% 72.30% 71.89% 66.88% 72.48%  74.25%

TELPA,/TELPA, significantly outperforms each variant across all projects in terms of branch cov-
erage and line coverage. All p-values are smaller than 0.05, demonstrating the statistically signif-
icant contribution of each component in TELPA, regardless of the used preceding test generation
tools.

TELPA,,,r performs the worst among all variants. This is because the unfiltered invocation se-
quences can be excessively long and complex, posing significant challenges for LLMs to compre-
hend the complex sequence, which in turn reduces the effectiveness of test generation. The result

, Vol. 1, No. 1, Article . Publication date: November 2018.



20 Chen Yang, Junjie Chen, Bin Lin, Ziqi Wang, and Jianyi Zhou

Table 4. Effectiveness of TELPA under different configurations in terms of average branch and line coverage

Cov. ‘Pynguin CODAMOSA TELPA crarch | TELPAL TELPA, ‘TELPAfiS TELPA,
Branch Cov.| 47.71% 50.87% 52.75%| 60.34% 63.98%| 59.79% 64.06%
Line Cov. 64.72% 67.92% 68.26%| 73.96% 75.54%| 74.08% 74.25%

demonstrates the contribution of sequence filtering, which could also balance the sequence content
and computational burden well. In particular, except TELPA 7, all other variants still outperform
CHATTESTER even when some component is removed from TELPA. This demonstrates the effec-
tiveness of using part of information specific to the challenges posed by hard-to-cover branches,
compared to directly integrating unnecessary or insufficient context for prompting, which also
reflects the negative influence of introducing irrelevant information on LLMs.

We also investigated whether our coverage-based counter-example sampling approach con-
tributes to the overall effectiveness of TELPA by comparing with TELPA,, that randomly selects
counter-examples. Table 3 shows that TELPA,., outperforms TELPA ., regardless of the preceding
test generation tools. This result further confirms the importance of using counter-examples even
if they are just selected randomly. Moreover, TELPA significantly outperforms TELPA, regardless
of the preceding test generation tools. For example, TELPA,, improves TELPAZ,, by 9.01% in terms
of average branch coverage achieved, while TELPA, improves TELPAY,, by 11.76%. The results
demonstrate the importance of a diverse set of counter-examples, which can be well achieved by
our coverage-based sampling strategy. Additionally, TELPA,,, reduced branch coverage by 6.3%
on average. The results empirically demonstrate that summarizing the functionality beforehand
enhances test generation effectiveness.

Takeaway V: Each component in TELPA contributes to the overall effectiveness signifi-
cantly, regardless of the preceding test generation tools used by TELPA.

4.4 RQ3: TELPA’s Effectiveness with Different Configurations

TELPA uses existing tools for initial test generation, and utilizes an LLM to generate new tests.
In this RQ, we examine how the adoption of existing tools and the choice of the LLM can im-
pact the performance. We first investigated the effectiveness of TELPA 4. that removes the pre-
ceding test generation tool and activates TELPA from scratch. By comparing TELPA .qcn With
CODAMOSAPR and Pynguin in Table 4, we can see that the TELPA ;- can improve CODAMOSAPh
and Pynguin by 3.70% and 10.56% in terms of average branch coverage and 0.50% and 5.47% in terms
of average line coverage. The improvements are not huge, especially compared to the differences
between TELPA, and CODAMOSAP! or between TELPA,, and Pynguin. This is expected, as the
time needed for LLMs to generate each test cases is normally much more than that required by
SBST techniques. TELPA (.4, leverages LLMs for even easy-to-cover branches, preventing it from
unleashing its full potential to reach hard-to-cover branches. Instead, CODAMOSAP" alternately
invokes Pynguin and LLMs for test generation, reducing the time needed by LLMs to a large extent,
while Pynguin is also efficient as it does not rely on LLMs. Hence, within the same limited testing
time, TELPAs¢rq1cn does not achieve significant coverage improvement over CODAMOSAPY and
Pynguin. This justifies our design choice of adopting preceding test generation tools to balance
effectiveness and efficiency.
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Table 5. Effectiveness of TELPA using GPT-4 evaluated on 100 randomly sampled target methods

Cov. ‘Pynguin CODAMOSA‘TELPAZS TELPA, TELPAgPt

Branch Cov. 26.86% 27.93% 35.68%  37.76% 38.43%

Line Cov. 42.13% 45.75% 53.66%  55.97% 56.08%

Table 6. Comparison among TELPA, CHATTESTERPM, Pynguin and CODAMOSAP" in terms of correctness

Metric ‘Pynguin CHATTESTER';“i TELPAP‘CODAMOSAP“ CHATTESTER?™ TELPA,

97.66% 78.82%  62.07%

Execution Pass Rate ‘ 97.44% 78.57%  62.48%

By examining the data, we found that 603 methods were not covered by CODAMOSAPM and
Pynguin at all within the testing time budget. For these methods, TELPA,., instead can effec-
tively improve the coverage for 259 of them. On average across these methods, TELPA, achieves
21.86% branch coverage and 39.99% line coverage, while TELPA, achieves 17.14% branch cover-
age and 43.80% line coverage. The results further confirm the ability of TELPA in improving the
coverage of hard-to-coverage branches.

Takeaway VI: Applying TELPA to easy-to-cover branches is not recommended due to the
non-negligible time required by LLMs. Our designed usage scenario for TELPA balances
effectiveness and efficiency well.

We then investigated the effectiveness of TELPA‘;S and TELPAY that employ DeepSeek-Coder-
6.7B-instruct [3] instead of Phind-CodeLlama-34B-v2 [11]. From Table 4, we found although TELPAZS/TELPAZS
exhibits small performance reduction compared to TELPA,/TELPA,, the former still largely outper-
forms Pynguin/CODAMOSAP. For example, TELPA? /TELPA’, improves Pynguin/CODAMOSAP
by 26.47% and 17.53% in terms of average branch coverage. To investigate the effectiveness of
TELPA when using more advanced LLMs, we evaluated TELPA on GPT-4. We randomly sampled
100 target methods from the benchmark used in previous RQs for evaluation due to the high cost of
invoking GPT-4’s APIs. From Table 5, TELPAgpt exhibits similar effectiveness to TELPA,, in terms
of both average branch coverage and average line coverage on the same 100 sampled methods.
This is attributed to the strength of Phind-CodeLlama-34B-v2, a powerful LLM that is specifically
trained on code corpus and exhibits close performance to GPT-4 on many code-related tasks [6].
The results demonstrate the generalizability of TELPA under different LLMs to some degree.

Takeaway VII: Leveraging small-scale LLMs in TELPA can also largely improve test cover-
age, demonstrating the generalizability of TELPA. By incorporating more advanced LLMs,
the effectiveness of TELPA is further improved.

4.5 RQ4: Correctness of Unit Tests Generated by TELPA

First, we found that all techniques achieve 100% syntax correctness, demonstrating their ability
to generate syntactically valid tests without errors. Then, Table 6 compares the execution pass
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Table 7. Comparison between TELPA and EvoSuite in terms of branch coverage on all branches

Project EvoSuite TELPA,
Chart 48.64%  52.45%
Lang 85.00% 88.71%
Math 73.57%  77.51%
Time 43.49%  55.40%

Average Branch Cov. 62.68%  68.52%

Average Line Cov. 73.09%  76.85%

rate of unit tests generated by Pynguin, CODAMOSAPY, CHATTESTERPM and TELPA. From the
table, both the LLM-based TELPA and CHATTESTERP! exhibit lower execution pass rates than
the search-based Pynguin, indicating the challenge of LLMs in generating semantically valid and
executable tests. Note that although CODAMOSAP! also relies on LLMs, it only leverages LLMs
to generate seed tests for Pynguin, and most of the tests are ultimately generated by Pynguin,
which results in comparable pass rates between CODAMOSAP" and Pynguin. TELPA exhibit lower
execution pass rates than CHATTESTERP™. This is because TELPA specifically targets hard-to-
cover branches, which often require constructing complex objects and resolving intricate inter-
procedural dependencies. These tests are inherently more challenging to execute successfully due
to their complexity, involving scenarios prone to runtime errors like incorrect object construction
or missing dependencies. In contrast, CHATTESTERPM generates simpler tests that are less effec-
tive at covering complex branches. For example, CHATTESTERP"s tests often cover straightfor-
ward branches with minimal object construction and fewer inter-procedural dependencies, result-
ing in higher pass rates but lower overall branch coverage. Specifically, TELPA, and TELPA, cover

21.00% and 21.06% more hard-to-cover branches than CHATTESTER};hl and CHATTESTER’C)}", re-
spectively.

We further analyzed the distribution of errors in the generated tests. For TELPA, the tests pre-
dominantly fail due to AssertionError (32.0%) and AttributeError (33.5%). AssertionError occurs
when the test fails an assertion, which is common in tests targeting complex branches where the
expected behavior is harder to predict or verify. AttributeError often happens when the test at-
tempts to access an attribute or method on an object that is not properly constructed or initialized,
which is a common issue when dealing with complex object dependencies. Overall, these results
confirm that while TELPA generates more complex tests that may have lower execution pass rates,
these tests are often essential for achieving higher branch coverage, particularly for hard-to-cover
branches involving complex objects and inter-procedural dependencies.

Takeaway VIII: TELPA generates more complex unit tests to target hard-to-cover
branches, which, while resulting in slightly lower execution pass rates, enables it to achieve
significantly higher branch coverage.

4.6 RQ5: Generalizability of TELPA
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Table 8. Comparison between TELPA and EvoSuite in terms of branch coverage on hard-to-cover branches

Branch Type ‘ EvoSuite TELPA,

Branches with complex dependencies 66.53%  77.42%

Branches with complex objects 56.79%  74.90%

All hard-to-cover branches

(union of the above two types) ‘ S7:55% - T4.59%

Table 7 presents the comparison results for TELPA, vs. EvoSuite on each project in terms of branch
coverage on all branches. The last two rows present the average branch coverage and line cover-
age across all projects. Table 8 presents the comparison results on hard-to-cover branches. From
Table 7 and Table 8, TELPA, achieves consistently higher branch coverage than EvoSuite. Specifi-
cally, on average, TELPA improves EvoSuite by 9.32% on all branches and 29.60% on hard-to-cover
branches in terms of branch coverage. Note that the improvement on all branches is smaller than
the improvement TELPA achieves over Pynguin. One possible explanation is that EvoSuite already
incorporates more advanced static analysis techniques than Pynguin, potentially diminishing the
additional benefits offered by TELPA. Moreover, other factors, such as differences in programming
languages, testing strategies, and even tool implementation details, may also contribute to this dis-
crepancy. Even though, they are still limited in handling intricate inter-procedural dependencies
and dynamically computed values, which is confirmed by the larger improvement achieved by
TELPA on hard-to-cover branches. The constant pool, for instance, may struggle when required
values are not explicitly defined as constants but are derived from complex object construction
logic. Similarly, testability transformations excels in cases where flags create coarse fitness land-
scapes in search-based approaches, making it difficult to find paths leading to high-fitness regions.
However, when the program contains complex inter-dependencies or complex object construc-
tions, testability transformation alone may not provide sufficient guidance. The transformation
does not inherently handle the semantics of such complex dependencies, which are crucial for
generating tests in challenging branches. The results reflects the fact that EvoSuite is already a
highly-optimized tool, but TELPA still provides meaningful improvements in terms of code cover-
age, particularly for those much more challenging branches.

Takeaway IX: Even when compared to a highly optimized tool (i.e., EvoSuite) on a stat-
ically typed language (i.e., Java), TELPA consistently improves coverage, particularly on
hard-to-cover branches, demonstrating its generalizability across different languages.

4.7 Threats to Validity

The threats mainly lie in parameter settings in TELPA , metrics and benchmarks used, and the
randomness. By default, we set the timeframe to two minutes for switching from preceding test
generation tools to our LLM-based test generation, the LLM temperature to 0, and the testing time
budget to 20 minutes on each software module. Both the timeframe and the testing time budget
are longer than the settings in the existing studies [35, 39], demonstrating higher sufficiency of
reaching coverage bottlenecks and evaluating test effectiveness. The results shown in Figure 8
also confirm it. Lower temperature allows TELPA to receive more deterministic responses from
LLMs, which is commonly employed in various tasks [24, 58]. In the future, we will investigate the
influence of different settings on the effectiveness of TELPA. Regarding metrics, we have employed
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Table 9. Comparison between TELPA,; and CHATTESTERP in terms of branch coverage on all branches

Project CHATTESTERPM TELPA,,
MicroService 26.47%  64.71%
PATool 89.08% 90.78%
DAService 42.71%  53.65%
Average Branch Cov. 52.75%  69.71%
Average Line Cov. 59.43%  72.71%

the widely-used branch coverage and line coverage, which are also aligned with our goal (i.e.,
reaching hard-to-cover branches). We also analyzed the overhead of our static program analysis:
on average, the time spent on each module is 1.5 seconds. This overhead is acceptable given its
effectiveness. Moreover, this process is performed offline and it could be further accelerated via
parallel executions.

Following the existing work [35], we did not investigate the bug detection effectiveness be-
cause test cases must include proper assertions to reveal bugs. However, TELPA focuses on im-
proving branch coverage rather than generating assertions, and various assertion generation ap-
proaches [28, 52] can be applied to the test cases generated by TELPA. In the future, we will use
more metrics to evaluate generated tests more sufficiently.

Regarding benchmarks, one potential threat to the validity of our results is the dynamically
typed nature of Python, which presents unique challenges for automated test generation. In dy-
namically typed languages, type information is not explicitly available at compile time. This makes
it difficult for automated test generation tools to infer correct types for object construction and
method invocations, potentially leading to ineffective or invalid tests. Furthermore, automated
test generation tools for Python, such as Pynguin and CODAMOSA, lack the advanced static anal-
ysis techniques used in more mature tools like EvoSuite. This may lead to ineffective or invalid
tests and bias the evaluation results. To mitigate this threat, we adapted TELPA to statically typed
languages (i.e., Java) and evaluate its effectiveness against EvoSuite on a widely-used Java bench-
mark Defects4] [33] in Section 4.6. The results demonstrate that TELPA consistently outperforms
EvoSuite on Java projects, which helps mitigating this threat to some extent.

Furthermore, the projects used for evaluation may appear in the training data of the LLMs used
in our study, which can cause the data leakage problem and bias the results [46]. Particularly, fol-
lowing the guidelines provided by previous work [46], we also adopted three internal Java projects
provided by our industrial partner (Huawei, a global leader company in IT), which can largely
reduce the threat from the potential data leakage of open-source projects. The three industrial
projects have different functionalities, i.e., a program analysis toolkit, an online micro-service sys-
tem, and a data analysis framework involving parallel computing and adaptation of design patterns.
For ease of presentation, we refer to the three projects as PATool, Microservice and DAService in
the following sections. Due to the company policy, we are unable to disclose further details. We
constructed TELPA,;, which leverages CHATTESTERP™ for preceding test generation and com-
pared it with CHATTESTERP™. We did not leverage EvoSuite since the three industrial projects
use Java 17, but EvoSuite supports up to Java 11.

Table 9 shows the comparison results for TELPA,; vs. CHATTESTERPY on each project in terms
of branch coverage. From the table, TELPA,; achieves significantly higher branch coverage than
CHATTESTERP" across all three industrial projects. On average, TELPA,; improves the branch
coverage from 52.75% to 69.71% and the line coverage from 59.43% to 72.71%. The improvements
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1 def format_body(self, content: str, input: str) ->str: 1 def test_case_0():

2 if is_valid_expression(input): 2 try:
3 for p in self.enabled_plugins: 3 str_0 ="u:’
4 content = p.format_body(content, input) 4 list_0 =]
5 return content 5 formatting_0 = module_0.Formatting(list_0)
6 str_1 = formatting_0.format_body(str_0,
6 def is_valid_expression(input): str_0)
7 pattern = r"A[a-zA-Z0-9._%+-1*_[a-zA-Z0-9._%+- 7 except BaseException:
]+@[a-zA-20-9.-]+\.[a-zA-Z]{2,}S" 8 pass
8 return re.match(pattern, input) is not None
Focal Method and Its Context Test Generated by CODAMOSA

1 def test_case_0(): 1 def test_case_0():

2 listo=[] 2 str_0 = "UP/VJeH~5&Db"

3 formatting_0 = module_0.Formatting(list_0) 3 list_0 =[]

4 4 formatting_0 = module_0.Formatting(list_0)

5 5 str_1 = formatting_0.format_body(str_0, str_0)

str_0 = "example_user@gmail.com"
str_1 = formatting_0.format_body(str_0, str_0)

Test Generated by TELPA Test Generated by Pynguin

Fig. 10. Case for complex dependencies

of TELPA on these unseen projects highlight its generalizability and effectiveness in real-world
scenarios, independent of potential data leakage from open-source training data.

Regarding randomness, following the previous guideline [21], we repeated all the experiments
for 20 times, including experiments on Java and those addressing data leakage threats. With 20
runs, TELPA exhibited a standard deviation of 1.8%, demonstrating consistency. Additionally, we
conducted a statistical significance test using the Kruskal-Wallis H test [34]. The result showed
no significant differences across runs (p > 0.05), indicating stable performance and mitigating this
threat to some extent.

5 CASE STUDY

To illustrate the scenarios that TELPA specifically targets and is capable of covering, we present
two cases that highlight its ability to address inter-procedural dependencies and complex object
construction.

The first case is shown in Figure 10, which demonstrates how TELPA addresses the challenge
posed by complex dependencies using branch dependency analysis. The target method format_body
processes input content using enabled plugins only if the input matches a specific date pattern val-
idated by is_valid_expression. To cover the branch where plugins are applied, the generated
test must provide an input that satisfies is_valid_expression, which requires understanding the
regex pattern. Baseline tools, such as Pynguin, generate random inputs (e.g., "UP/VJeH 5&Db”) that
fail the regex check, leaving the target branch uncovered. In contrast, TELPA leverages branch de-
pendency analysis to identify the dependency between format_body and is_valid_expression.
By including the source code of is_valid_expression in the prompt, TELPA guides the LLM
to infer that valid inputs must adhere to the regex pattern, which requires an underscore in the
account part of an email address (e.g., “example_user@gmail.com”). This allows TELPA to gen-
erate tests that invoke the plugin branch, while baseline tools fail due to their inability to infer
valid inputs. Notably, the test generated by CHATTESTER is omitted here, as it differs from the
Pynguin-generated test only in a single random value that still fails the regex check.

The second case is shown in Figure 11, which demonstrates how TELPA addresses the challenge
posed by complex object construction using object construction analysis. In this case, the focal
method is the schema function, which processes a dataclass (cls) and constructs a schema based
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1 def process_schema(data, mixin, mm_fields): 1 def test_case_0():
2 cls = dataclass(type("DynamicDataclass", (), {"field1": 2 try:
field(metadata={'dataclasses_json': {'mm_field': 3 int_0 = 790
mm_fields.String()}})})) 4 str_0="
| 3 build_schema(cls, mixin, partial) | 5 bool_0 = True
6 dict_0 = {}
4 def build_schema(cls, mixin, partial): 7 timestamp_field_0 =
|5 schema_ = schema(cls, mixin, infer_missing) | module_0._TimestampField(default=int_0,
6 DataClassSchema: typing.Type[SchemaType] = attribute=str_0, dump_only=bool_0, **dict_0)
type(f'{cls.__name__.capitalize()}Schema’) 8 var_0 = module_0.schema(int_0, int_0,
7 return DataClassSchema timestamp_field_0)
9 except:
8 def schema(cls, mixin, infer_missing): 10 pass
9 schema = {}
10 for field in dc_fields(cls): Test Generated by CODAMOSA
11 metadata = (field.metadata or {}).get('dataclasses_json', {})
12 if metadata.get(‘'mm_field') is not None: 1 def test_case_0():
13 schema(field.name] = metadata['mm_field'] 2 try:
14 else: 3 bool_0 = True
15 schemalfield.name] = mm_fields.Raw() 4 dict_0={}
16  return schema 5 list_0=[]
6 var_0 = module_0.schema(bool_0, dict_0, list_0)
Focal Method and Its Context 7 except:
1 @dataclass 8 RS
2 class SimpleDataclass:
3 field1: str = field( metadata={'dataclasses_json’: Test Generated by Pynguin
{'mm_field': mm_fields.String()}}
) 1 def test_schema():
2 @dataclass
4 class Test(unittest.TestCase): S ClassiiestDatatlass,
5 def test_simple_dataclass(self): 4 field1: str
6 schema = mm.schema(SimpleDataclass) 5 field2: int
7 self.assertlsInstance(schema['field1'], mm_fields.Field) 6 schema = build_schema(TestDataClass, (), False, False)
8 self.assertlsInstance(schema['field1'], mm_fields.Integer) 7 assertEqual(schema.Meta.fields, (‘field1’, ‘field2’))
Test Generated by TELPA Test Generated by CHATTESTER

Fig. 11. Case for complex object construction

on the metadata of its fields. Specifically, it checks if the metadata dictionary of each field contains
akey dataclasses_json and uses the associated mm_field to populate the schema. Constructing
a valid cls object with the correct metadata structure is critical for covering the branch where
metadata.get(mm_field) is not None. Baseline tools struggle with this task: Pynguin and CO-
DAMOSA generate invalid inputs (e.g., integers, booleans) that do not match the expected cls type,
while CHATTESTER constructs a valid dataclass but omits the required dataclasses_json meta-
data. TELPA addresses this challenge by performing object construction analysis to trace the call
chain process_schema — build_schema — schema. It extracts the logic from process_schema,
where cls is dynamically instantiated with the required metadata, and incorporates this context
into the prompt. As a result, TELPA generates a valid test case with the required metadata struc-
ture, ensuring coverage of the target branch.

These cases demonstrate how TELPA leverages program analysis to address challenges pro-
posed by complex dependencies and object constructions. By understanding inter-procedural de-
pendencies and the complex object construction logic, TELPA generates tests that can cover those
challenging hard-to-cover branches.

6 DISCUSSION

Hallucination. Although TELPA can significantly improve test coverage compared to the state-
of-the-art SBST and LLM-based techniques, it is still unable to reach all the hard-to-cover branches
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within the given testing time budget. Through our analysis, the major reason lies in the halluci-
nation problem, namely LLMs confidently produce incorrect responses. For example, some gener-
ated tests by TELPA use non-existent parameters for invoking some methods. Currently, several
approaches have been proposed to relieve the hallucination problem in various software engineer-
ing tasks, such as fine-tuning LLMs with PPO [48] or DPO [42] algorithms based on high-quality
data. In the future, we can incorporate them to further improve the effectiveness of TELPA.

Orthogonality with Prompting Enhancement Methods. TELPA is a novel prompting tech-
nique for addressing the challenge of hard-to-cover branches in software testing, which improves
the prompt contents specific to this task. Besides improving prompt contents, there are also some
other prompting enhancement methods, including various CoT techniques (e.g., SCoT [36] and
CCoT [26]) and post-processing techniques (e.g., self-repairing [25]). CoT techniques mainly elicit
LLMs to produce intermediate reasoning steps based on the provided prompt for improving LLMs’
effectiveness, while post-processing techniques mainly fix invalid code produced by LLMs based
on the given prompt through static analysis or providing error messages to LLMs for self-repairing.
They are actually orthogonal to TELPA (improving prompt contents), thus combining them may
further improve test coverage.

Assertion Generation. TELPA focuses on improving branch coverage, a critical precursor to
assertion generation. Assertions generated may reveal bugs only if the buggy code is covered by
tests. While LLMs are capable of generating complete tests including both test prefixes and asser-
tions [47, 60, 61], the quality of these assertions varies. That is, some assertions can effectively
determine whether the focal method behaves as expected with specific inputs, while some oth-
ers are relatively simplistic (e.g., just checking if an object is None). Some works [28, 52] have
specifically focused on assertion generation as part of test creation, and these techniques could
potentially enhance the quality of LLM-generated assertions. In the future, we plan to refine these
assertions by integrating assertion generation techniques and evaluating their effectiveness using
metrics like bug detection and mutation scores [32].

Trade-off in File-Level Analysis. TELPA currently limits its analysis of method invocation
sequences to the file hosting the method under test. This design represents a trade-off between com-
prehensiveness and computational efficiency. The current file typically contains the most relevant
usage scenarios for the target method, as it is both the definition location and often the location
where it is the most frequently used [54, 61]. This local context provides sufficient information
for generating effective tests in most cases. This approach of focusing on the local context is also
widely used in many test generation approaches, such as CHATTESTER [61], ChatUniTest [25],
and CODAMOSA [35]. While analyzing the entire codebase (e.g., looking at the other classes that
might use the target class) could provide more comprehensive results, it would also introduce
substantial computational costs. Additionally, cross-file analysis can be particularly challenging
in dynamically typed languages like Python, where imports and method invocations are often re-
solved at runtime. While limiting the analysis to the current file works well in many cases, we
acknowledge that it may miss some usage scenarios, particularly when the target method is pri-
marily used in other files. In the future, we can explore project-wide usage patterns to further
improve our approach.

7 RELATED WORK

We present traditional and deep-learning-based test generation techniques as related work. The
most widely-studied traditional test generation technique category is SBST, including Pynguin [39]
investigated in our work. Pynguin is a state-of-the-art technique for Python projects, and there
are also SBST techniques for Java projects, such as Randoop [40] and EvoSuite [29]. Randoop
performs random generation, while EvoSuite leverages more advanced search algorithms to guide
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test generation. They have also been improved by incorporating string literals from human-written
tests [27] and object construction graphs [38].

Some other techniques, instead, employ symbolic execution to improve test coverage [22, 23,
31, 37, 50]. For example, Galeotti et al. [31] integrated dynamic symbolic execution (DSE) into
the Genetic Algorithm (GA) adopted by EvoSuite. Their approach mutates tests, where primitive
values can influence the fitness, to cover specific corner cases without sacrificing general coverage.
Braione et al. [23] and Li et al. [37] transformed path conditions into optimization problems and
solved them with SBST and machine learning techniques, respectively. Baluda et al. [22] combined
symbolic execution and symbolic reachability analysis to improve the effectiveness by testing rare
execution conditions and eliminating infeasible branches. However, it is well-known that symbolic
execution has difficulties in dealing with complex data types and objects, thus unable to address
our specific challenges.

Our approach TELPA utilizes program-analysis-enhanced prompting to exploit the code com-
prehension ability of LLMs and facilitate the effective test generation for hard-to-cover branches.
The above-mentioned techniques, while not effective for this task, can still be incorporated into
TELPA as preceding testing tools and benefit from our new prompting method.

There are also several deep-learning-based test generation techniques [16, 51]. Before prompting
LLMs for test generation, ATHENATEST [51] built a transformer model based on a large dataset of
target methods and tests for test generation. A3Test [16] first built a pre-trained language model
for assertions in a self-supervised manner based on PLBART [15], and then fine-tuned it with
test generation data. CAT-LM [43] trained a GPT-style LLM on Java and Python repositories, us-
ing a unique objective that maps source code to corresponding test files. Recently, some work
leveraged LLMs for test generation [17, 25, 35, 47, 61], including CODAMOSA and CHATTESTER
used in our study. For example, TestGen-LLM [17] utilized assured offline LLM-based software
engineering [18] to integrate language models as a service within a comprehensive software en-
gineering workflow, ultimately recommending unit tests with higher coverage. ChatUniTest [25]
leveraged LLMs to generate tests with similar prompt contents used in CODAMOSA, but designed
post-processing strategies to fix invalid tests generated by LLMs.

TELPA is also a LLM-based test generation technique, which improves prompt contents with
the aid of program analysis (i.e., contextual information purification specific to the challenges of
hard-to-cover branches). On one hand, those test-repair strategies can be combined with TELPA
to further improve its performance. On the other hand, these deep-learning-based techniques can
be also used as preceding test generation tools in TELPA for orthogonal integration.

There are also some empirical evaluations focusing on LLM-based test generation. Wang et
al. [53] surveyed 102 recent papers on using LLMs for software testing, providing a comprehen-
sive overview. Schifer et al. [47] conducted an extensive study evaluating the effectiveness of
using API signatures, documentation, and related information for prompting LLMs to generate
unit tests. Tang et al. [49] presented a systematic comparison of test suites generated by ChatGPT
and EvoSuite. Yang et al. [60] conducted the first empirical study to investigate the unit test gener-
ation effectiveness of open-source LLMs. Different from these empirical studies, TELPA is a novel
LLM-based test generation technique with the aid of program analysis.

8 CONCLUSION

Existing test generation techniques face difficulties in covering branches involving specific com-
plex objects and intricate inter-procedural dependencies. To address this issue, we propose a novel
technique, named TELPA. TELPA leverages program analysis to assist LLMs in constructing com-
plex objects and understanding code semantics, thus improving the test generation performance.
Additionally, TELPA employs counter-example sampling and coverage-based feedback to guide
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LLMs to effectively and efficiently generate tests. Our experiments on 27 open-source Python
projects , four open-source Java Projects, and three internal Java projects demonstrate that TELPA
significantly outperforms both the state-of-the-art SBST and LLM-based techniques. We released
our implementation of TELPA and experimental data for replication and practical use. Please find
them at https://zenodo.org/records/15410112.
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