
Leveraging Context Information for Self-Admitted
Technical Debt Detection

Miki Yonekura∗, Yutaro Kashiwa∗, Bin Lin†, Kenji Fujiwara‡, Hajimu Iida∗
∗Nara Institute of Science and Technology, Japan

†Hangzhou Dianzi University, China
‡Nara Women’s University, Japan

Abstract—Self-Admitted Technical Debt (SATD) refers to non-
optimal software design or implementation that is acknowledged
and explicitly documented in the code by developers. Detecting
SATD and understanding its evolution can help developers
better manage their development activities and monitor the
software quality. In recent years, numerous approaches have
been proposed to automatically identify SATD. However, these
approaches still suffer from a high number of false positives (i.e.,
non-SATD comments being detected as SATD).

To further advance this field, in this paper, we conduct an
empirical study to evaluate the performance of the state-of-the-
art SATD detection tools and investigate the causes behind the
false positives. By manually analyzing 135 false positive cases, we
identify the main types of comments that are easily misclassified.
To address this issue, we propose a new approach, CASTI, which
integrates context information into CodeBERT, a pre-trained
model for programming languages. Our evaluation demonstrates
that CASTI can significantly reduce the false positives and that
the context information does help improve the performance.

Index Terms—SATD, CodeBERT, Context-Aware Detection

I. INTRODUCTION

In software projects, developers often opt for a temporary
and quick solution instead of adopting the best software
development practices due to time constraints. The implied
costs of reworking the non-optimal source code are often
referred to as “technical debt” [1]. Similar to financial debt,
technical debt also accumulates “interest” if not repaid early,
making the corrections more difficult and expensive over
time [2]. In practice, developers sometimes explicitly acknowl-
edge the technical debt in the source code as comments. For
example, developers can inform the team that the current
implementation is not optimal and that future maintenance
will be necessary using certain keywords (e.g., //TODO: or
//FIXME:) in the comments of the source code. This kind of
documented technical debt is called Self-Admitted Technical
Debt (SATD) [3]. SATD helps clarify the issues that need to
be recognized by the development team, making it easier to
prioritize and allocate resources.

Recently, several studies have investigated the impact of
SATD on code quality and found that code containing SATD
is more likely to have lower quality. For example, researchers
have found that the files with SATD tend to undergo more bug
fixes [4], [5] and be modified more frequently [6] than files
without SATD. These results indicate that while temporary
quick implementation solutions may speed up the software
product delivery at some point, they often come with higher

costs for future maintenance and evolution. In practice, SATD
becomes increasingly difficult to address over time, as the
software system itself becomes more complex. Not handling
SATD in a timely manner not only enlarges the maintenance
effort but also delays the addition of new features or the evo-
lution of existing functionalities due to potential workarounds
needed to accommodate non-optimal code. In fact, studies
have found that in projects with a high occurrence of SATD,
many developers are reluctant to address SATD even though
they are aware of its existence [7]. This situation can lead to
a decline in project quality, potentially hindering the project’s
long-term success.

Given the importance of addressing SATD in a timely
manner, many recent studies have proposed new approaches
to detect SATD in software projects. The emergence of
these techniques has also significantly contributed to soft-
ware quality-related empirical studies [8]–[16]. Particularly,
machine learning-based methods are gaining more and more
popularity, leveraging state-of-the-art models such as Con-
volutional Neural Network (CNN) [14] and Gated Graph
Neural Network (GGNN) [15]. While these methods have
overall improved the performance of SATD detection, they
still produce a considerable number of false positives. We
conjecture that the high number of false positives may result
from the fact that these approaches only take into account
the comments, without considering the relevant source code
as contexts. For example, when we see “//we need to
break apart for 1.8 ver,” one might think that this
is a SATD comment. However, when checking the source code
(as shown in Snippet 1), it is not difficult to conclude that this
comment only explains the rationale behind the if condition,
which should be classified as a non-SATD comment.

To verify our assumption and understand why state-of-the-
art approaches produce false positives, we first conducted
an empirical study to evaluate the performance of existing
approaches and manually analyzed what types of non-SATD
are more likely to be misclassified as SATD. We then proposed
a novel SATD detection approach, CASTI, leveraging context
information. More specifically, we fed the comments and their
context (the source code around them) into the CodeBERT
language model. Our evaluation shows that CASTI can achieve
better precision than state-of-the-art approaches while main-
taining a high recall. Moreover, the context information plays
a critical role in reducing the occurrences of false positives.



Snippet 1: Example of False Positive Detections
1 // we need to break apart for 1.8 ver.
2 if (lex_state == EXPR_CMDARG) {
3 result = tLPAREN_ARG;
4 } else if (lex_state == EXPR_ARG) {
5 result = tLPAREN2;
6 }

The main contributions of this study are as follows:
1) We compared the performance of state-of-the-art

approaches using the same datasets: Existing SATD
detectors are claimed to have a high accuracy in the orig-
inal studies. While the evaluations are often conducted
on the dataset by Maldonado et al. [11], they do not use
a consistent approach (e.g., using different subsets of the
dataset). Therefore, a fair comparison of these tools on
the exact same dataset is needed. Our study fills this gap
and reveals their performance on a large dataset.

2) Our study revealed which types of non-SATD are of-
ten misclassified as SATD: We manually inspected the
false positives generated by state-of-the-art approaches
and our approach. The summarized categories indicate
the research direction for further improving SATD de-
tectors. We also analyzed the prevalence of each type of
false positives.

3) We proposed a context-aware SATD detection ap-
proach: Our approach takes into account the context
information around comments and can significantly re-
duce the false positives while maintaining a high recall.
We also demonstrated which context information is more
beneficial for the performance improvement.

The remainder of this paper is structured as follows. Sec-
tion II introduces the related work. Section III presents an
empirical study which compares the performance of state-of-
the-art SATD detection approaches and analyzes the causes
of false positives. Section IV proposes Context-Aware Self-
admitted Technical Debt Identifier (CASTI), a new approach
for SATD detection leveraging context information. The
methodology and the results for evaluating CASTI are also
presented in this section. Section V discusses threats to valid-
ity, and Section VI concludes this paper.

Replication Package: To facilitate replication and further
studies, we provide the data used in our replication package.1

II. RELATED WORK

In this section, we introduce existing SATD detection tech-
niques, categorized as pattern-based, machine learning-based,
and deep learning-based.

A. Pattern-Based SATD Detection

Potdar and Shihab [3] first coined the term SATD. They
manually inspected approximately 100,000 comments col-
lected from four repositories and identified 63 text patterns
that indicate the presence of SATD. For example, phrases

1https://github.com/mikiyonekura/CASTI-Replication

like need to and should be are typically included in
SATD comments, indicating the need for future revisions of
the source code by oneself or others. Based on this study,
Bavota et al. [17] leveraged these patterns to identify SATDs
in other repositories and classify the types of SATDs.

Guo et al. [10] proposed a fuzzy matching approach to
identify SATDs, which uses only typical SATD patterns such
as TODO, FIXME, XXX, and HACK. Like other pattern-based
approaches, this approach does not require any training data
to build a prediction model. Nevertheless, their empirical
evaluation using four open-source software projects shows
a higher precision than simple machine-learning approaches,
which require a time-consuming and resource-intensive man-
ual labeling process to construct large datasets.

B. Machine Learning-Based SATD Detection

The pattern-based approaches typically use regular expres-
sions that need to be pre-defined. While these approaches can
often achieve a high precision, they might not capture most of
the SATD comments (i.e., having a low recall and missing nu-
merous SATDs not matched with regular expressions) [13]. To
address this issue, many machine learning-based approaches
have been proposed and become the mainstream.

Maldonado et al. [11] proposed an NLP-based machine
learning approach to automatically identify two common types
of SATD: design debt and requirement debt. To reduce the
noise, several filtering heuristics are applied to remove the
comments which are less likely to contain SATD, such as li-
cense comments and Javadoc comments. Their model employs
a maximum entropy classifier, which not only automatically
extracts the most important features but also identifies the
features negatively contributing to the classification results.
To evaluate the approach, they collected a dataset of 62,566
comments and manually categorized them into five types of
SATD. Their empirical evaluation of two types of SATD
(design and requirement SATD) shows that their approach
significantly outperforms the pattern-based approach [3].

Huang et al. [12] proposed a novel text mining-based
approach for classifying comments as SATD or non-SATD.
This approach employs a composite classifier of multiple sub-
classifiers that are built from different repositories. A voting
strategy [18] is used to determine the final label. Each sub-
classifier is trained with Naı̈ve Bayes Multinomial. Their
empirical evaluation using the dataset created by Maldonado
et al. [9] demonstrates that their approach increases the F1-
value over the pattern-based approach [3] and the NLP-based
approach [11] by 499.19% and 27.95%, respectively.

Sala et al. [16] proposed a new approach, DebtHunter, that
applies two-fold predictions. It first performs binary classi-
fication (i.e., SATD or not) and then categorizes the type of
SATD. DebtHunter employs Sequential Minimal Optimization
(SMO) [19] for both binary and multi-classification. Their
evaluation also uses the dataset by Maldonado et al. and their
approach achieves a precision of 0.892, a recall of 0.751, and
an F1-value of 0.816.



C. Deep Learning-Based Detection

Given the emergence of advanced deep learning techniques
in recent years, many studies have proposed deep learning-
based SATD detection approaches.

Ren et al. [14] developed an approach using convolutional
neural networks (CNNs) to extract important features repre-
senting the characteristics of SATD comments. Specifically,
they used Word2Vec to generate embedding vectors. Their
experiments on the dataset by Maldonado et al. [11] exhibit a
precision of 0.669, a recall of 0.887, and a F1-value of 0.752.
Similarly, Wang et al. [20] also proposed a CNN-based model
but leveraged an attention mechanism. Their evaluation using
the same dataset [11] shows that their new model achieves a
F1-value 9.14% higher than the basic CNN model [14].

Salle et al. [21] proposed PILOT, a technical debt detector
built on natural language processing and deep learning tech-
niques. More specifically, the approach employs TF-IDF and
word embedding techniques like Word2Vec to gain a deeper
understanding of the semantics of comments and generate
high-dimensional feature vectors. PILOT also uses a feedfor-
ward neural network (FFNN) as the classifier, which excels in
processing high-dimensional data and improving the detection
accuracy of SATD comments thanks to its simple structure
and effective learning capabilities. Their empirical evaluations
on the dataset by Maldonado et al. [11] demonstrate that PI-
LOT outperforms DebtHunter, a traditional machine-learning
approach, in detecting SATD comments.

In more recent years, several studies have adopted lan-
guage models for SATD detection. Prenner and Robbes [22]
evaluated the effectiveness of several models based on pre-
trained Transformers for SATD identification. The evaluation
using the Maldonado dataset [11] showed that a BERT-based
model achieved an average F1-value of 0.821, significantly
surpassing the 0.766 achieved by the aforementioned CNN
model [20]. Similarly, Sabbah and Hanani [23] explored the
SATD identification performance of several word embed-
ding methods using different pre-trained language models
(Word2Vec, GloVe, BERT) and different classifiers (SVM,
RF, Naive Bayes, and CNN). Their evaluation using various
datasets shows that the CNN classifier with BERT achieved
the highest performance in the dataset they created, while
Random Forest with TF-IDF had the best performance on the
Maldonado et al.’s dataset.

These existing approaches have explored various models
and feature selection techniques to improve SATD detection
performance. However, these approaches typically only use
comments as input. As described before, to precisely identify
SATDs, even developers have to understand the context of
the source code around the comments. Therefore, providing
a certain amount of code to models might help improve the
performance. As the closest work to ours, Sheikhaei et al.
[24] very recently explored the effectiveness of Large Lan-
guage Models in identifying and categorizing SATDs. Their
experiments using Maldonado et al.’s dataset demonstrate that
all fine-tuned LLMs can improve F1-value by 4.4% to 7.2%

compared to the state-of-the-art non-LLM baselines for SATD
identification tasks. More importantly, they investigated the
effectiveness of incorporating contextual information to cate-
gorize the types of SATDs (e.g., defects, design, tests). Their
experiment showed that providing file names, method bodies,
and comments in the prompts improves the performance of
classification tasks. Despite the similarity, our study differs
in two aspects. First, their work uses context information
for SATD type classification, while our study focuses on the
more fundamental problem: identifying whether a comment is
SATD or not. It is unclear whether providing contexts can help
with this task. Second, we explore different types of context
information and analyze how different granularities of contexts
will impact the performance.

III. EVALUATING STATE-OF-THE-ART SATD DETECTORS

While emerging SATD detectors have demonstrated a high
accuracy, there is currently no clear winner. Although most
approaches were evaluated with the Maldonado dataset [11],
the testing sets are not exactly the same: some approaches
used the whole dataset (e.g., [14], [22]), while others re-
moved duplicates and undersampled the dataset to ensure
balanced numbers of SATD and non-SATD comments [16],
[21]. To understand the real performance of state-of-the-art
SATD detectors, in this study, we use the same dataset to
evaluate two approaches which are not directly compared and
achieved better performance than other compared techniques:
PILOT based on a traditional deep-learning model [21] and
BERT+CNN based on a language model [23].

A. Research Questions

To evaluate the state-of-the-art approaches, we propose the
following research questions (RQs):

RQ1: How do state-of-the-art approaches perform in
SATD identification? This RQ aims to perform a fair perfor-
mance comparison of the state-of-the-art SATD detectors.

RQ2: What are the main sources of false positives?
This RQ aims to understand the main causes of false positives
produced by the state-of-the-art approaches. We focus on false
positives because, in practice, low precision introduces a lot
of noise and puts extra burden on developers, significantly
diminishing the practical value of such tools. The insights
gained from this RQ can help further enhance SATD detectors.

B. Study Design

1) Dataset: In this study, we adopt the dataset by Maldonado
et al. [11], which is the most commonly used in previous
studies. Maldonado et al.’s dataset was collected from ten
open-source projects from different application domains and
of varying sizes. A team of experts with extensive experience
as software engineers manually annotated whether a comment
is SATD or not. Note that SATD is rarely contained in
Javadoc and license comments. Maldonado et al. thus excluded
all these comments except for those that clearly include
SATD, such as comments containing task annotation tags (e.g.,
TODO). Table I presents the detailed information of the dataset.



TABLE I: Details of the Maldonado Dataset

Repository Release #Comments #SATD % SATD

Ant 1.7.0 4,137 131 0.60
ArgoUML 0.34 9,548 1,413 2.08
Columba 1.4 6,478 204 0.60
EMF 2.4.1 4,401 104 0.41
Hibernate 3.3.2 2,968 472 4.05
JEdit 4.2 10,322 256 1.50
JFreeChart 1.0.19 4,423 209 0.89
JMeter 2.10 8,162 374 1.86
JRuby 1.4.0 4,897 662 5.57
SQuirrel 3.0.3 7,230 285 1.04

Average - 6,257 411 1.86
Total - 62,566 4,110 -

As one of our ultimate goals is to examine whether context
information can help reduce false positives and the original
dataset does not include the source code around comments, we
extract the code ourselves. To do so, we employ the Source
Code-Comments Comment-Context Miner (SoCCMiner) [25],
which receives a file path and automatically identifies com-
ments and the relevant source code. It is worth noting that the
tool can also identify the part of the snippet related to the given
comment. That is, no matter if a comment is associated with a
class, method, block, or line, it can provide the corresponding
source code. Below we provide an example of each type of
comment and its “relevant code”.

Line comments: This type of comments is relevant to the
source code in the next line. Snippet 2 depicts an example of
single-line comments describing the behavior of the next line.

Snippet 2: Example of single-line comments [26]
1 // add ant properties
2 allProps.putAll(getProperties());

Inline comments: This type of comments function similarly
as single-line comments, and the only difference is that it is
written right after the code in the same line, which is often
short. Snippet 3 is an example of such an inline comment. The
comment introduces what the declared variable is used for.

Snippet 3: Example of inline-line comments [27]
1 File remoteFile; // use for interface

Block comments: This type of comments is relevant to
multiple lines of code (i.e., block). They are often used
for conditional statements (e.g., if), loops (e.g., for, while),
try-catch blocks, or highly connected statements. Snippet 4
presents an example of block comments, noting that the loop
outside will be broken when there is a non-ASCII character.

Snippet 4: Example of block comments [28]
1 // if it's not an ASCII, break here
2 if (ch >= 128) {
3 break;
4 }

Method comments: This type of comment is located above
the method and explains the purpose and functionality of the

method. Snippet 5 shows an example of method comments.
This comment explains how the method can be used.

Snippet 5: Example of method comments [29]

1 // Get the jar files in .ant/lib
2 private URL[] getUserURLs() {
3 File LibDir = new File(HOMEDIR);
4 return getLocationURLs(LibDir);
5 }

Class comments: Snippet 6 shows an example where the
relevant code is a class. Class comments usually explain
the purpose and functionality of the class, including a brief
description of major methods and fields.

Snippet 6: Example of class comments [30]

1 // A class used to parse the output.
2 class ChangeLogParser {
3 private static int GET_FILE = 1;
4 public Entry[] getEntrySet() {
5 Entry[] array = new Entry[];
6 return array;
7 }
8 }

SoCCMiner takes given file names as input and returns a
set of a comment and relevant code. To provide inputs for
SoCCMiner, we first extract the names of the files that contain
the comments included in Maldonado et al.’s dataset. We then
match the comments in the output of SoCCMiner with the
comments in Maldonado et al.’s dataset. After mapping, we
obtain a set of comments, relevant code, and corresponding
label (i.e., SATD or not). Note that there are a non-negligible
number of cases where the comments in Maldonado et al.’s
dataset and the comments returned by SoCCMiner cannot
be matched. This is because the comments in Maldonado et
al.’s dataset were modified to remove redundant spaces, line
breaks, etc [31]. After removing the unmatched comments,
72.7% of the comments (i.e., 45,498 comments) in Maldon-
ado et al.’s dataset remain. Moreover, we removed duplicate
comments following the approach in the previous study [16],
treating comments with identical text as duplicates regardless
of whether their corresponding source code was identical or
not. As a result, the final set consisted of 25,835 comments,
which represents 41.3% of the original dataset. This step is
crucial to ensure that the same comments are not included in
both the training and the testing sets.

Table II summarizes the number of comments that are
successfully matched, the number of SATD comments, and
the ratio of SATD comments. The numbers in brackets in
the second and third columns indicate the percentage of the
matched comments in each repository of the original dataset.
2) Data Collection and Analysis: To evaluate the performance
of state-of-the-art SATD detectors (RQ1), we split the dataset
and use 60% as training data, 20% as validation data, and
the remaining 20% as testing data. The following four perfor-
mance metrics are used in our evaluation:



TABLE II: Details of the studied dataset.

Repository #Comments #SATD % SATD

Ant 2,181 (52.7%) 57 (43.5%) 2.61
ArgoUML 3,874 (40.6%) 591 (41.8%) 15.26
Columba 3,299 (50.9%) 87 (42.6%) 2.64
EMF 1,214 (27.6%) 32 (30.8%) 2.64
Hibernate 1,780 (60.0%) 244 (51.7%) 13.71
JEdit 2,007 (19.4%) 115 (44.9%) 5.73
JFreeChart 1,980 (45.0%) 60 (28.7%) 3.03
JMeter 2,926 (35.8%) 195 (52.1%) 6.66
JRuby 3,072 (62.7%) 259 (39.1%) 8.43
SQuirrel 3,502 (48.4%) 104 (36.5%) 2.97

Average 2,584 (41.3%) 174 (42.4%) 6.37
Total 25,835 (41.3%) 1,744 (42.4%) -

• Precision: The proportion of comments predicted as
SATD that are actually SATD.

• Recall: The proportion of actual SATD comments that
are predicted as SATD.

• F1 score: The harmonic mean of Precision and Recall.
Since there is a trade-off between Precision and Recall,
the F1 score evaluates the balance between Precision and
Recall. In other words, it assesses whether the increase
in Precision (or Recall) outweighs the decrease in Recall
(or Precision).

• ROC-AUC: ROC-AUC stands for the Area Under the
Receiver Operating Characteristic Curve. The ROC curve
plots the True Positive Rate (TPR) and False Positive
Rate (FPR) obtained when changing the threshold used
for SATD classification. ROC-AUC ranges from 0 to 1,
with a higher value indicating better model performance
in discriminating between SATD and non-SATD across
all classification thresholds.

To investigate what kinds of non-SATDs are more likely
to be misclassified as SATD (RQ2), we adopted a card
sorting approach [32] to manually inspect and categorize the
false positives produced by PILOT and BERT+CNN. More
specifically, two of the authors independently examine each
false positive and determine the purposes of the misclassified
non-SATD comment. It is worth noting that inspectors are
also asked to check the source code around these comments.
During the annotation, each new label becomes available for
reuse to obtain consistent annotation and avoid unnecessary
highly similar labels. Conflicts between the two inspectors are
resolved by a third inspector, who discusses the annotation
with the first two inspectors until an agreement is reached.
Note that the three inspectors have programming experience
ranging from 7 to 15 years.

C. Results

TABLE III: Comparison of existing methods

Method Precision Recall F1 ROC-AUC FP FN

PILOT 0.793 0.838 0.813 0.976 75 55
BERT+CNN 0.762 0.888 0.820 0.985 95 38

1) RQ1: How do state-of-the-art approaches perform in SATD
identification?: Table III presents the performance metrics of
PILOT and BERT+CNN.

As can be seen in Table III, PILOT achieves a precision of
0.793, higher than that of BERT+CNN (0.762). On the other
hand, BERT+CNN has a higher recall of 0.888, compared to
0.838 for PILOT. BERT+CNN also obtains higher F1-value
and ROC-AUC. That is, BERT+CNN outperforms PILOT in
all metrics except precision. While a precision of around 80%
is not low, the number of false positives is still not negligible.

Previous studies [33], [34] show that software development
support tools tend not to be adopted when they exhibit a
high false positive rate. In particular, for SATD detection, the
large volume of comments imposes a significant burden on
developers due to high false positive rates. This study thus pri-
oritizes precision over recall. While increasing both precision
and recall is optimal, even improving the precision without
reducing the recall can already bring significant benefits.

RQ1: BERT+CNN outperforms PILOT in terms of recall
and ROC-AUC. However, PILOT has a higher precision,
which produces fewer false positives.

2) RQ2: What are the main sources of false positives?:
To understand what kinds of non-SATD comments are more
likely to be misclassified as SATD, we manually inspected
false positives produced by PILOT and BERT+CNN. More
specifically, we examined 75 false positive (FP) comments
from PILOT and 95 from BERT+CNN (Table III). In total,
we inspected 135 comments due to the overlaps between these
two groups. The manual annotation by the two of the authors
reached agreement in 90.6% of the cases, with Cohen’s kappa
coefficient being 0.871 (indicating substantial agreement).

Table IV shows the manual agreement results, listing the
types of false positives and their numbers of occurrences. The
135 false positive comments can be categorized into seven
different types (while in reality two of them are not real false
positives). Below we illustrate each type of false positives.

TABLE IV: Classification results of FP comments

Type PILOT BERT+CNN

Labeling error 42 (56.0%) 35 (36.8%)
Implementation feedback request 1 ( 1.3%) 19 (20.0%)

Rationale behind implementation 10 (13.3%) 17 (17.9%)
Code behavior explanation 19 (25.3%) 11 (11.6%)
Limitations/issues of implementation 1 ( 1.3%) 5 ( 5.3%)
Indication of unexpected scenarios 1 ( 1.3%) 5 ( 5.3%)
Implementation update note 1 ( 1.3%) 3 ( 3.2%)

Total 75 95
*Cases not in bold are not real false positives.

Labeling errors: This category refers to comments labeled
as non-SATD in the Maldonado dataset but are actually SATD.
That is, this category does not represent real false positives. In
our manual inspection, “Labeling Errors” is the most common
source of “false positives”, accounting for 37.8% (i.e., 51/135)
of the instances. An example of “Labeling Errors” can be seen



in Snippet 7. In fact, we found that many comments including
explicit keywords such as “//TODO:” and “//FIXME:” are
still labeled as non-SATD. These cases should be included as
true positives. Some other studies [4], [31] also mentioned this
issue, indicating that a more carefully refined dataset would
be appreciated to advance this field of research.

Snippet 7: Example of Labeling error [35]
1 private void explain(ActionEvent e){
2 //TODO: make a new history item
3 ToDoList list =

Designer.theDesigner().getToDoList();↪→

4 ...

Implementation feedback request: This category refers
to comments that ask other developers for feedback on the
implementation. Developers sometimes use comments as a
communication channel to discuss the feasibility of imple-
mentations or ask questions when they do not understand the
source code. For example, the comment in Snippet 8 asks for
feedback on whether the implementation is correct. In fact,
these comments are also not real false positives, as they do
require developers to respond later in some way. A previous
study [36] also observed these cases and classified them as
SATD. As can be seen in Table IV, PILOT is less likely to
classify these comments as SATD, indicating that it is less
sensitive to detecting such cases.

Snippet 8: Example of Implementation feedback request [37]
1 private static boolean isPrimitive

(String typeDescriptor){↪→

2 return typeDescriptor.length()== 1; //
right?↪→

3 }

Rationale behind implementation: This category refers to
comments explaining the background or reasons for imple-
menting the source code in the current way. For instance,
the comment in Snippet 9 shows that the if condition is
created to deal with a bug related to jdk1.4.2. This is the
most prevalent category for real false positives, accounting for
17.0% (i.e., 23/135) of the instances.

Snippet 9: Example of Rationale behind implementation [38]
1 //deal with jdk1.4.2 bug:
2 if (ex != null) {
3 if (results.indexOf("zip file

closed")>= 0) {↪→

4 log("You are running " +
JARSIGNER_COMMAND + " against a
JVM with" + " a known bug that
manifests as an
IllegalStateException.",
Project.MSG_WARN);

↪→

↪→

↪→

↪→

↪→

5 } else {
6 throw ex;
7 }
8 }

Code behavior explanation: This category refers to com-
ments that explain what the source code is supposed to do.

These comments help enhance the readability of code, which
is essential for program comprehension. Snippet 10 shows an
example comment explaining that the code is supposed to
connect to a remote server. This type of false positive is also
quite common in our study, with slightly fewer occurrences
than “rationale behind implementation,” and accounting for
19.3% (i.e., 26/135) of the cases.

Snippet 10: Example of Code behavior explanation [39]
1 //connect to the remote site
2 connection.connect();

Limitations/issues of implementation: This category refers
to comments that warn about the limitations or issues of the
current implementation. It often notes the special conditions
of using certain functions or the potential side effect of the
code. Snippet 11 shows a comment that explicitly indicates
the potential recursive calls caused by the proxy initialization.

Snippet 11: Example of Limitations of implementation [40]
1 boolean hasNoQueuedAdds =

lce.getCollection().endRead(); //
warning: can cause a recursive calls!
(proxy initialization)

↪→

↪→

↪→

Indication of unexpected scenarios: This category refers
to comments that declare impractical, unlikely, or undesired
scenarios. Snippet 12 illustrates a comment indicating a con-
dition that should never happen, which contains an exception
handling.

Snippet 12: Example of Indication of unexpected scenar-
ios [41]

1 if (retry > MAX_CONN_RETRIES) {
2 // This should never happen
3 throw new BindException();
4 }

Implementation update note: This category refers to
comments which describe the updates applied to the original
source code. An example in Snippet 13 explains that the
implementation in the block has been moved from another
location in the program.

Snippet 13: Example of Implementation update note [42]
1 if ( element.isFetch() ) {
2 // This is now handled earlier.
3 if ( element.getQuery != null ) {
4 }
5 }

RQ2: There are five categories of comments that are
inappropriately classified as SATD. The two most com-
mon categories are “Rationale behind implementation” and
“Code behavior explanation”. The high number of incorrect
“false positives” reaffirms the need for extra caution when
comparing the performance of SATD detectors and a more
carefully curated dataset.



Datasets Comments

Fully-connected layer Embedded vector

Identify Relevant code

Labels

//To deal with a bug

Relevant code

if (var != null) Co
de

Co
m

m
en

t
[S

EP
]

//
To

 d
ea

l w
ith

 a
 b

ug
if

 (v
ar

 !
= 

nu
ll)

[S
EP

]

Embedding

Embedding
Model

SoftMax

SATD

Non-SATD

Fig. 1: Overview process of CASTI

IV. CONTEXT-AWARE SELF-ADMITTED TECHNICAL DEBT
IDENTIFIER (CASTI)

In this section, we propose Context-Aware Self-admitted
Technical Debt Identifier (CASTI), a novel model leveraging
CodeBERT [43] and context information for identifying SATD
comments.

A. Methodology

Figure 1 depicts the overall architecture of CASTI. CASTI
takes comments and relevant code as input, transforms them
into feature vectors, and returns a binary value (i.e., SATD or
not) via the fully connected layers. The details of each process
are described as follows.
1) Input Preparation: As discussed in Section I, even de-
velopers sometimes need to check the source code to decide
whether a comment is SATD or not. Existing machine-learning
approaches usually receive only the comments and classify the
comment based on word frequency (i.e., ignoring the context),
resulting in many false positives. In recent years, modern
language models (e.g., CodeBERT [43] and CodeT5 [44]) have
been demonstrated the strong ability to take into consideration
the context information. Therefore, to create our own language
model to identify SATD, we will use both comments and their
contexts as input.

As presented in Section III-B1, we consider five different
types of comments (single-line comments, inline comments,
block comments, method comments, and class comments).
SoCCMiner is used to retrieve their corresponding their “rele-
vant codes”. These comments, together with the relevant code,
then go through the embedding process to be converted into
feature vectors.
2) Embedding: We use the pre-trained model CodeBERT [43]
to generate embeddings. CodeBERT is a bimodal model that
uses two types of data: natural language (NL) and six program-
ming languages (Python, Java, JavaScript, PHP, Ruby, Go).
It excels in capturing the similarity between text and code,
enabling tasks such as code summarization and code search
by natural language texts. Since our approach also requires

capturing the relation between comments and relevant code,
CodeBERT is considered as a suitable model for embedding
generation.

In our approach, the CodeBERT model receives strings
that contain comments and their relevant code, divided by a
separator “[SEP]”, which allows CodeBERT to recognize that
the input has two segments (i.e., comments and source code)
and improve the performance [43]. These strings are then
transformed into integer values using a standardized tokenizer,
BertTokenizer, which tokenizes the source code using a pre-
trained vocabulary file. Particularly, uncommon words are
divided into subwords using the WordPiece algorithm [45].
This algorithm, widely used in language models such as BERT,
first creates a vocabulary that includes all characters, then
selects the most frequently occurring character combinations
in the training data. For example, the word “TestCase” is
split into “Test” and “##Case”, where the special symbol “##”
indicates that it is a subword token (i.e., part of a longer word).
If a token is not found in the pre-trained vocabulary file, the
unknown token ⟨UNK⟩ is used.

BertTokenizer then maps each token, including subword
tokens, out-of-vocabulary tokens (⟨UNK⟩), and other special
tokens (⟨s⟩) and ⟨/s⟩), to integers specified in the vocabulary
file. The generated list of integers is padded with 0 at the
front and back to ensure all lists have the same length. In
this study, as we need to handle data of a long length such as
classes, we set the limit of token size to 512 to ensure the data
variability. Finally, the tokenized data are fed into the encoder,
and embedding vectors are returned by CodeBERT.

Note that we do not perform any preprocessing for the
texts of comments such as stopword removal, stemming,
and lemmatization. This is because the BERT architecture
directly uses the input words for masking and predicts the
original words from their context. The original paper [46] also
recommends using raw texts. In fact, we did not observe any
significant differences in our preliminary experimentation with
a preprocessing step.



3) Model Training: To optimize the model performance,
several studies [14], [47] have used the cross-entropy loss
function to adjust model weights during training. Specifically,
a weighted cross-entropy loss is robust to imbalanced datasets,
and thus it is adopted in our study. The loss function is defined
as follows:

L(y, ŷ) = − (w1y log(ŷ) + w0(1− y) log(1− ŷ))

Here, y represents the correct class (0 representing non-SATD
or 1 representing SATD), and ŷ represents the predicted
probability by the model. Additionally, w0 and w1 represent
the weights for class 0 and class 1, respectively. The weights
for each class are defined as inversely proportional to the size
of the class:

w0 =
1

n0
, w1 =

1

n1

where n0 and n1 represent the sizes of class 0 and class 1,
respectively. We also adopt early stopping to prevent overfit-
ting. Specifically, the training process stops if the evaluation
loss does not improve for five consecutive epochs.
4) SATD Prediction: To predict whether a comment contains
SATD, we provide the fine-tuned model with that comment
and its relevant code. Similarly, these inputs are processed
by BertTokenizer and transformed into feature vectors. The
fine-tuned model returns the likelihood of the class being
SATD via the fully connected layer and the softmax function.
The prediction result is represented as a floating-point number
between 0 and 1.

B. Research Questions

To evaluate the performance of CASTI, we propose the
following two research questions (RQs):

RQ3: How does CASTI perform compared to state-of-
the-art approaches? This RQ aims to compare the perfor-
mance of CASTI with state-of-the-art SATD detection tools.
More specifically, we are interested in whether providing
the context of the source code reduces the number of false
positives.

RQ4: How does the context information impact the
performance? This RQ aims to investigate the impact of
the amount of context information provided on the model
performance in SATD prediction.

C. Study Design

1) Dataset and metrics: To ensure a fair comparison, we
adopt the same dataset (25,835 comments with 1,744 con-
taining SATD) and metrics (Precision, Recall, F1-score, and
ROC-AUC) used for answering RQ1 and RQ2. Note that we
fix the incorrect false positive cases in the dataset identified by
our previous manual analysis before running the experiments.
2) Data Collection and Analysis: In this study, we use the
pre-trained CodeBERT model provided by Huggingface2 as
the encoder for embedding training instances. This pre-trained
model provides a powerful context-aware data representation.

2https://huggingface.co/microsoft/codebert-base

To optimize our model during training, we use an optimizer
of AdamW [48] with a maximum of 10 epochs, a batch size
of 16, 500 warm-up steps, a learning rate of 5e-6, and a
weight decay of 0.01. While a larger batch size could lead to
faster convergence, it may require more memory, which can
be constrained by our computational environment. Therefore,
we use a batch size of 16 as a feasible setting for the training.

To answer RQ3, we run CASTI on the dataset and comapre
the metrics with those obtained in RQ1.

To answer RQ4, we consider different sizes of the context
length. While CASTI feeds the comments together with the
detected relevant code to the model, it is unclear how different
sizes of context information could impact the performance.
Therefore, we change the size of the code provided as relevant
code (only for class, method, and block) in our experiment.
The rationale behind this choice is that inline comments and
single-line comments have a very clear scope of code they
are associated with. However, the class, method, and block
comments, the comment of SATD might only be relevant to
part of the code. Specifically, we create eight models that are
trained with eight different sizes of relevant code including
a maximum of 0, 1, 2, 4, 8, 16, 32, and 64 lines of code,
extracted from the class, method, and blocks (Note that the
lines we extract from classes, methods, and blocks, never
surpass the size of themselves, i.e., the extracted lines ≦ the
size of relevant code). We compare the performance of these
eight models with CASTI.
3) Running Environment: The proposed model and the pre-
vious approaches are trained on machines with 2 Xeon Gold
6230R 26 core processors, 2 NVIDIA A100 GPUs, and 256GB
memory. The training process took an average of 2 hours and
5 minutes for our proposed approach CASTI.

D. Results

1) RQ3: How does CASTI perform compared to state-of-the-
art approaches?: Table V shows the performance of each
approach to identify SATD comments. Note that as we have
corrected the misclassified false positive cases identified in our
previous RQs, the metric values of PILOT and BERT+CNN
are slightly different from Table III.

When comparing the existing approaches with CASTI in
terms of precision, CASTI achieves a value which is 4.1% and
5.9% higher than PILOT and BERT+CNN, respectively. The
number of false positives is thus the lowest (i.e., 19) among
the three approaches, indicating that leveraging context infor-
mation and CodeBERT can indeed reduce the false positives.

However, when it comes to recall, BERT+CNN shows
a 2.2% higher recall than CASTI. As there is a trade-off
between precision and recall, we then compare them in terms
of F1-value, and ROC-AUC. For both metrics, CASTI has
the highest performance (3.7% and 1.4% higher in F1-value,
1.5% and 0.9% higher in ROC-AUC, compared to PILOT and
BERT+CNN, respectively).

We argue that in such an application, precision outweighs
recall, as false positives will waste developers’ effort and
hinder their willingness to use these tools. At the same time,



TABLE V: Comparison with existing methods after filtering (RQ3)

Method Precision Recall F1 ROC-AUC FP FN

PILOT 0.899 0.838 0.867 0.971 32 55
BERT+CNN 0.884 0.880 0.887 0.977 41 38
CASTI 0.936 0.861 0.899 0.986 19 47
*The corrections for the false positives found by our manual inspection are applied to this table.
Therefore, the precision and F1-value in this table are higher than those in Table III.

TABLE VI: Distribution of the causes of false positives produced by PILOT, BERT+CNN, and CASTI

PILOT BERT+CNN CASTI
Causes (A) (B) (C) A ∩ C B ∩ C A ∩B A ∩B ∩ C

Labeling error 42 35 29 9 3 24 6
Implementation feedback request 1 19 5 0 0 0 0

Rationale behind implementation 10 17 8 1 0 4 2
Code behavior explanation 19 11 9 0 1 3 0
Limitations/issues of implementation 1 5 1 0 0 0 0
Indication of unexpected scenarios 1 5 0 0 0 1 0
Implementation update note 1 3 1 0 0 0 0

Total 75 95 53 10 4 32 8
(Real False Positives) 32 41 19 1 1 8 2

while the recall of CASTI is not the highest, it is still fairly
comparable with BERT+CNN, which achieves the best recall.

It is worth noting that when comparing the results of the
very latest paper [24] that leverages a T5-based model and
evaluated the performance on Maldonado et al.’s dataset, F1-
value of CASTI (i.e., 0.853 without fixing the labeling errors)
is higher than those of all variations in T5-based models (i.e.,
0.818–0.839). Our future work will include comparing more
recent approaches with the same dataset settings.

We also manually investigated what types of false positives
are produced by CASTI using the same annotation process
as RQ2. Table VI shows the number of each type of false
positives generated by the existing methods and by CASTI.
CASTI produced 53 comments that were determined to be
false positives. As can be seen, 34 comments are “Labeling
error” and “Implementation feedback request”, which are not
false positives in reality. Therefore, CASTI only produces 19
false positives in total, which is the lowest among all three
approaches (PILOT: 32, BERT+CNN: 41). Regarding the real
false positives, the number associated with “Rationale behind
implementation” is dramatically reduced by CASTI.

Snippet 14: Example of an case where the existing methods
cannot correctly classify while CASTI can [49]

1 if (account == null) {
2 /* this should not happen
3 templates seem to be missing */
4 text = "Account templates missing"
5 throw new RuntimeException(text);
6 }

Snippets 1 and 14 illustrate two cases where the existing
approach cannot, but CASTI can classify correctly. Both
comments contain words typically used in SATD descriptions
such as “should be” and “need to”. However, by looking at the
common false positive cases among these approaches (the last

four columns in Table VI), most of the false positives produced
by these three approaches are not identical. Our future work
will investigate why these differences occur and explore the
effectiveness of an ensemble approach using CASTI and other
state-of-the-art approaches.

RQ3: CASTI outperforms the existing approaches with
respect to all the performance measures except recall.
Notably, CASTI can correctly identify comments that explain
the rationale behind implementation as non-SATD.

2) RQ4: How does the context information impact the per-
formance?: Figure 2 shows the performance of the models
with different sizes of the relevant code. Note that 0 lines
of code means that the model does not use class, method,
and block code but uses inline and one-line comments. This
approach helps to understand whether even a tiny bit of context
for comments associated with multiple lines of code can also
improve the performance.

When looking into ROC-AUC, the performance is the
highest when only using one line of code as the context.
However, the differences are subtle, with a ROC-AUC ranging
from 0.984 to 0.989. On the other hand, F1-value dynamically
varies across different settings. Comparing no context with one
line of relevant code, using one line of code does help achieve
better F1-value. After that, the performance decreases with the
growing size of lines used until 32 lines are used. The F1-value
increases again and using the maximum lines of relevant code
achieves the highest score.

Interestingly, in terms of precision, while the trend is similar
to F1-value, the highest precision is achieved when using
one line of code. This suggests that too much information
sometimes introduces noise to the model and has a negative
impact on the SATD detection performance.



0 1 2 4 8 16 32 64 CASTI
Maximum number of lines included in the relevant code

0.70

0.75

0.80

0.85

0.90

0.95

1.00
P

er
fo

rm
an

ce

Precision
Recall
F1 Score
ROC-AUC

Fig. 2: Performance when using different sizes of classes,
methods, and blocks of code

Takeaways: To ensure accurate predictions (i.e., increasing
precision) and save computational resources for training,
using one line of relevant code with comments is more recom-
mended than using all the relevant code. Whereas, if the tool
users need a generally higher performance of the tools, they
are suggested to use the model trained with the whole relevant
code because it is when the most of performance metrics are
the best.

RQ4: Training with the appropriate size of the source
code as context information does improve the performance
of SATD detection. However, using one line of code can
already achieve very good performance, especially in terms
of precision.

V. THREATS TO VALIDITY

Threats to internal validity concern the factors we did not
consider that might impact the results. This study, especially
RQ2 and RQ3, relies on the annotation of the authors, which is
always a subjective process. To mitigate the potential bias, we
examined SATD comments independently and discussed the
comments that had conflicting annotations until an agreement
was reached by all annotators.

Threats to construct validity concern the relation between
theory and observation. Our evaluation employs Maldonado
et al.’s dataset [11] that is also created through manual
labeling. However, Section III shows that their dataset contains
some labeling errors. As the number of labeled instances is
more than 70,000, rechecking all the instances in the dataset
takes tremendous time. Therefore, we do not relabel them in
the same manner as previous studies. The misclassification
introduced by the dataset may lead to slightly different results,
while keeping the same trend.

Moreover, while our discussion favors precision rather than
recall, we acknowledge that the priority might be different for
different teams. For example, when a development team has
abundant human resources and aims to remove all SATD in
the code, they might also pay a significant amount of attention
to the recall. However, we believe that for the majority of

developers equipped with numerous development assistants
already, presenting too many false positives is a show-stopper
for adopting an extra tool.

Threats to external validity concern the generalizability of
our findings. This study uses the most popular dataset created
by Maldonado et al.. The SATD in the dataset is collected
from 10 repositories. While the dataset contains a significant
number of SATD comments, the number of repositories used
is rather limited.

Additionally, our evaluation shows that using an appropriate
size of relevant code improves the performance of identifying
SATD. However, we have not confirmed it with other state-
of-the-art SATD detectors or other language models, such as
T5-based approaches [24]. We assume that there will be a
similar conclusion when we use different context information,
as CodeBERT is already quite good at capturing the relation
between code and natural language comments. The importance
of correct context can thus also be reflected in more advanced
language models as well. However, this should be further
verified with new experiments.

VI. CONCLUSIONS AND FUTURE WORK

Given the popularity of addressing SATD in software de-
velopment, many approaches have been proposed to detect
SATD. In this study, we first conducted an empirical study
to evaluate the performance of two state-of-the-art SATD
detection approaches and analyzed what types of non-SATD
are more likely to be misclassified as SATD. We then proposed
our own approach, CASTI, leveraging CodeBERT and context
information, with the aim of reducing false positives. Our
evaluation demonstrated that CASTI can significantly improve
the precision, and the amount of context information provided
does impact the performance of the prediction models.

Our future work is three-fold. First, we would like to
build a more reliable dataset and compare the performance
of more state-of-the-art approaches, including large language
models. Second, we will examine whether an ensemble ap-
proach adopting a voting strategy could further improve the
SATD identification performance, given the fact that the false
positives produced by different approaches are very different.
Third, we would like to investigate methods to automatically
narrow down the scope of relevant code. We believe that using
precisely relevant code without extra unnecessary information
might further enhance the SATD identification ability of the
language models.

ACKNOWLEDGMENT

We gratefully acknowledge the financial support
of JSPS for the KAKENHI grants (JP21H03416,
JP24K02921, JP24K02923), the Bilateral Program grant
(JPJSBP120239929), as well as JST for the PRESTO grant
(JPMJPR22P3), the ASPIRE grant (JPMJAP2415), and the
AIP Accelerated Program (JPMJCR25U7).



REFERENCES

[1] W. Cunningham, “The wycash portfolio management system,” SIGPLAN
OOPS Mess., vol. 4, no. 2, p. 29–30, 1992.

[2] Y. Kamei, E. da S. Maldonado, E. Shihab, and N. Ubayashi, “Using
analytics to quantify interest of self-admitted technical debt,” in Joint
Proceedings of the 4th International Workshop on Quantitative Ap-
proaches to Software Quality (QuASoQ) and 1st International Workshop
on Technical Debt Analytics (TDA), vol. 1771, 2016, pp. 68–71.

[3] A. Potdar and E. Shihab, “An exploratory study on self-admitted tech-
nical debt,” in Proceedings of the 2014 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2014, pp. 91–100.

[4] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, and Y. Zhou, “How far
have we progressed in identifying self-admitted technical debts? a com-
prehensive empirical study,” ACM Transactions on Software Engineering
and Methodology (TOSEM), vol. 30, no. 4, pp. 1–56, 2021.

[5] M. Iammarino, F. Zampetti, L. Aversano, and M. Di Penta, “Self-
admitted technical debt removal and refactoring actions: Co-occurrence
or more?” in Proceedings of the 2019 IEEE International Conference
on Software Maintenance and Evolution (ICSME), 2019, pp. 186–190.

[6] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact of self-
admitted technical debt on software quality,” in Proceedings of the 2016
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, 2016, pp. 179–188.

[7] F. Zampetti, G. Fucci, A. Serebrenik, and M. D. Penta, “Self-admitted
technical debt practices: a comparison between industry and open-
source,” Empirical Software Engineering (EMSE), vol. 26, no. 6, p. 131,
2021.

[8] G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in Proceedings of the 2016 IEEE/ACM Working
Conference on Mining Software Repositories (MSR), 2016, pp. 315–326.

[9] E. da S. Maldonado and E. Shihab, “Detecting and quantifying different
types of self-admitted technical debt,” in Proceedings of the 7th IEEE
International Workshop on Managing Technical Debt (MTD), 2015, pp.
9–15.

[10] Z. Guo, S. Liu, J. Liu, Y. Li, L. Chen, H. Lu, Y. Zhou, and B. Xu, “Mat:
A simple yet strong baseline for identifying self-admitted technical
debt,” arXiv preprint arXiv:1910.13238, 2019.

[11] E. da Silva Maldonado, E. Shihab, and N. Tsantalis, “Using natural lan-
guage processing to automatically detect self-admitted technical debt,”
IEEE Transactions on Software Engineering (TSE), vol. 43, no. 11, pp.
1044–1062, 2017.

[12] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical
Software Engineering (EMSE), vol. 23, no. 1, pp. 418–451, 2018.

[13] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd detector:
A text-mining-based self-admitted technical debt detection tool,” in Pro-
ceedings of the 40th International Conference on Software Engineering
(ICSE): Companion Proceeedings, 2018, pp. 9–12.

[14] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From perfor-
mance to explainability,” ACM transactions on software engineering and
methodology (TOSEM), vol. 28, no. 3, pp. 1–45, 2019.

[15] J. Yu, K. Zhao, J. Liu, X. Liu, Z. Xu, and X. Wang, “Exploiting
gated graph neural network for detecting and explaining self-admitted
technical debts,” Journal of Systems and Software (JSS), vol. 187, p.
111219, 2022.

[16] I. Sala, A. Tommasel, and F. A. Fontana, “Debthunter: A machine
learning-based approach for detecting self-admitted technical debt,” in
Proceedings of the 25th International Conference on Evaluation and
Assessment in Software Engineering (EASE), 2021, pp. 278–283.

[17] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in Proceedings of the 13th International Conference on
Mining Software Repositories (MSR), 2016, pp. 315–326.

[18] L. Breiman, “Bagging predictors,” Machine Learning, vol. 24, no. 2, pp.
123–140, 1996.

[19] J. C. Platt, “12 fast training of support vector machines using sequential
minimal optimization,” Advances in kernel methods, pp. 185–208, 1999.

[20] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, and H. Wu, “Detecting and
explaining self-admitted technical debts with attention-based neural net-
works,” in Proceedings of the 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE), 2020, pp. 871–882.

[21] A. D. Salle, A. Rota, P. T. Nguyen, D. D. Ruscio, F. A. Fontana, and
I. Sala, “Pilot: Synergy between text processing and neural networks
to detect self-admitted technical debt,” in Proceedings of the 2022
International Conference on Technical Debt (TechDebt), 2022, pp. 41–
45.

[22] J. A. Prenner and R. Robbes, “Making the most of small software
engineering datasets with modern machine learning,” IEEE Transactions
on Software Engineering (TSE), vol. 48, no. 12, pp. 5050–5067, 2022.

[23] A. F. Sabbah and A. A. Hanani, “Self-admitted technical debt classifica-
tion using natural language processing word embeddings,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 13, no. 2,
pp. 2142–2155, 2023.

[24] M. S. Sheikhaei, Y. Tian, S. Wang, and B. Xu, “An empirical study on
the effectiveness of large language models for SATD identification and
classification,” Empirical Software Engineering, vol. 29, no. 6, p. 159,
2024.

[25] M. Sridharan, M. Mantylä, M. Claes, and L. Rantala, “Soccminer: a
source code-comments and comment-context miner,” in Proceedings
of the 19th International Conference on Mining Software Repositories,
2022, pp. 242–246.

[26] apache, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953
cc698aedebb9b356c1ca180/src/main/org/apache/tools/ant/taskdefs/optio
nal/EchoProperties.java#L274, October 30th,2007, accessed: November
1st, 2024.

[27] ——, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953cc
698aedebb9b356c1ca180/src/main/org/apache/tools/ant/taskdefs/optiona
l/ejb/IPlanetEjbc.java#L1104, October 30th,2007, accessed: November
1st, 2024.

[28] ——, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953cc
698aedebb9b356c1ca180/src/main/org/apache/tools/ant/launch/Locator.j
ava#L275, October 30th,2007, accessed: November 1st, 2024.

[29] ——, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953cc
698aedebb9b356c1ca180/src/main/org/apache/tools/ant/launch/Launche
r.java#L355, October 30th,2007, accessed: November 1st, 2024.

[30] ——, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953cc
698aedebb9b356c1ca180/src/main/org/apache/tools/ant/taskdefs/cvsli
b/ChangeLogParser.java#L36, October 30th,2007, accessed: November
1st, 2024.

[31] M. Sridharan, L. Rantala, and M. Mäntylä, “PENTACET data - 23
million contextual code comments and 250,000 SATD comments,” in
Proceedings of the 20th IEEE/ACM International Conference on Mining
Software Repositories (MSR), 2023, pp. 412–416.

[32] J. R. Wood and L. E. Wood, “Card sorting: current practices and
beyond,” Journal of Usability Studies, vol. 4, no. 1, pp. 1–6, 2008.

[33] M. Christakis and C. Bird, “What developers want and need from
program analysis: an empirical study,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). ACM, 2016, pp. 332–343.

[34] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Pro-
ceedings of the 35th International Conference on Software Engineering
(ICSE). IEEE, 2013, pp. 672–681.

[35] argouml-tigris org, “argouml,” https://github.com/argouml-tigris-org/arg
ouml/blob/20de5bdccc18e361010cb22aea5d79d1b047b1a8/src/argouml
-app/src/org/argouml/cognitive/ui/DismissToDoItemDialog.java#L244,
Janually 13rd, 2013, accessed: November 1st, 2024.

[36] Y. Kashiwa, R. Nishikawa, Y. Kamei, M. Kondo, E. Shihab, R. Sato,
and N. Ubayashi, “An empirical study on self-admitted technical debt in
modern code review,” Information and Software Technology, vol. 146,
p. 106855, 2022.

[37] albfan, “jedit,” https://github.com/albfan/jEdit/blob/79057da41de68aeb9
4c503fe22b0a972b3eb3697/bsh/ClassGeneratorUtil.java#L1068, August
29th, 2004, accessed: November 1st, 2024.

[38] apache, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953
cc698aedebb9b356c1ca180/src/main/org/apache/tools/ant/taskdefs/Verif
yJar.java#L181, October 30th,2007, accessed: November 1st, 2024.

[39] ——, “ant,” https://github.com/apache/ant/blob/375b5132adfb66953cc
698aedebb9b356c1ca180/src/main/org/apache/tools/ant/taskdefs/Get.jav
a#L788, October 30th, 2007, accessed: November 1st, 2024.

[40] hibernate, “hibernate-orm,” https://github.com/hibernate/hibernate-orm
/blob/0dcbf6df712af5cdbb7d2767c140ddb000d44403/core/src/main/j
ava/org/hibernate/engine/loading/CollectionLoadContext.java#L260,
Janually 24th, 2009, accessed: November 1st, 2024.



[41] apache, “jmeter,” https://github.com/apache/jmeter/blob/c6184b5e7ffe
b56364ed43074504f9539a3b9f01/src/protocol/http/org/apache/jmeter
/protocol/http/sampler/HTTPJavaImpl.java#L507, October 21th, 2013,
accessed: November 1st, 2024.

[42] hibernate, “hibernate-orm,” https://github.com/hibernate/hibernate-orm
/blob/0dcbf6df712af5cdbb7d2767c140ddb000d44403/core/src/main/j
ava/org/hibernate/loader/hql/QueryLoader.java#L186, Janually 24th,
2009, accessed: November 1st, 2024.

[43] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[44] Y. Wang, W. Wang, S. R. Joty, and S. C. H. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understand-
ing and generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2021, pp. 8696–
8708.

[45] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s Neural
Machine Translation System: Bridging the Gap between Human and
Machine Translation,” arXiv preprint, 2016.

[46] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[47] D. Yu, L. Wang, X. Chen, and J. Chen, “Using bilstm with attention
mechanism to automatically detect self-admitted technical debt,” Fron-
tiers of Computer Science, vol. 15, no. 4, p. 154208, 2021.

[48] A. Kumar, R. Shen, S. Bubeck, and S. Gunasekar, “How to fine-tune
vision models with SGD,” in Proceedings of the Twelfth International
Conference on Learning Representations (ICLR), 2024.

[49] basmilius, “Columba,” https://github.com/zieglerm/columbamail/blob/5
d8b48043a99e77d529cb2a5b0cca3113b8755d7/columba/trunk/mail/src
/main/java/org/columba/mail/gui/config/accountwizard/AccountCreator.
java#L50, Janually 5th, 2007, accessed: November 1st, 2024.


