
Navigating the Testing of Evolving Deep Learning
Systems: An Exploratory Interview Study

Hanmo You
College of Intelligence and Computing

Tianjin University
Tianjin, China

youhanmo@tju.edu.cn

Zan Wang
College of Intelligence and Computing

Tianjin University
Tianjin, China

wangzan@tju.edu.cn

Bin Lin
Hangzhou Dianzi University

Hangzhou, China
b.lin@live.com

Junjie Chen†
College of Intelligence and Computing

Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Abstract—Deep Learning (DL) systems have been widely
adopted across various industrial domains such as autonomous
driving and intelligent healthcare. As with traditional software,
DL systems also need to constantly evolve to meet ever-changing
user requirements. However, ensuring the quality of these contin-
uously evolving systems presents significant challenges, especially
in the context of testing. Understanding how industry developers
address these challenges and what extra obstacles they are
facing could provide valuable insights for further safeguarding
the quality of DL systems. To reach this goal, we conducted
semi-structured interviews with 22 DL developers from diverse
domains and backgrounds. More specifically, our study focuses
on exploring the challenges developers encounter in testing
evolving DL systems, the practical solutions they employ, and
their expectations for extra support. Our results highlight the
difficulties in testing evolving DL systems (e.g., regression faults,
online-offline differences, and test data collection) and identify
the best practices for DL developers to address these challenges.
Additionally, we pinpoint potential future research directions to
enhance testing effectiveness in evolving DL systems.

Index Terms—Deep Learning, Software Evolution, Testing,
Interview Study

I. INTRODUCTION

Deep Learning (DL) systems have been widely integrated
into products of different sectors, such as autonomous ve-
hicles [1], medical diagnostics [2] and software engineer-
ing [3]–[5]. Like traditional software, DL systems also need
to continuously evolve to adapt to new requirements and ever-
growing demands of users. For example, during the COVID-19
pandemic, Apple updated Face ID, a built-in facial recognition
system, which enables users to unlock devices and authenticate
purchases while wearing masks, bringing huge convenience to
users [6]. However, the evolution of DL systems sometimes
may also pose challenges or side effects. For example, the
chatbot of the parcel delivery firm DPD was found to swear
at users after an update in January 2024, leading to substantial

† Corresponding Author.

reputation damage [7]. Similarly, ChatGPT has faced criticism
from users for providing incorrect or overly simplified answers
after updates, resulting in accusations of it becoming “dumber”
and “lazier”. This has significantly impacted user experience
and dented user confidence in OpenAI [8]. These cases un-
derscore the potential risks associated with the evolution of
DL systems. Therefore, it is particularly important to conduct
rigorous testing during the system evolution.

The academic community has conducted extensive research
on DL testing and various approaches have been proposed to
reveal bugs of DL systems, such as test case generation [9],
[10] and mutation testing [11], [12]. However, these studies
often focus on testing a specific version of the DL system,
neglecting its evolving nature, which encompasses continuous
development, refinement, and enhancement over time. In prac-
tice, many aspects of DL systems may change along with the
system evolution, such as training data or model structure. The
complexity of these systems also increases, making it more
challenging to effectively test the entire system [13]. Currently,
there remains a notable gap in the knowledge of testing
evolving DL systems. Understanding the difficulties faced
by developers and the strategies they adopt to handle these
difficulties can provide valuable insights for further improving
the effectiveness of the testing process in DL systems.

In this study, we interviewed 22 DL system developers from
different companies in different sectors and countries, aiming
to explore various aspects of testing evolving DL systems,
including 1) the specific challenges they face, 2) the effective
solutions they adopt to address these challenges, and 3) what
kind of additional support they yearn for. Our results lead
to six different types of obstacles developers face (e.g., high
costs for test case collection/annotation), 19 best practices
for addressing these challenges (e.g., adopting large language
models to assist in data labeling), and 16 types of concrete
support developers would like to have (e.g., tools that can
effectively detect errors in annotated data).



The main contributions of our paper are as follows.
• By consulting experts in the field, we summarize the

challenges encountered in testing evolving DL systems.
• We extract the best practices of current DL system de-

velopers in testing evolving DL systems. These strategies
serve as invaluable references for the industry, offering
concrete guidelines and actionable insights that can ben-
efit other DL developers in their endeavors.

• We highlight developers’ expectations for extra support
in their testing activities, indicating future research direc-
tions and potential collaboration opportunities.

The remainder of this paper is organized as follows. In
Section II, we discuss the background of DL system evolution
and provide an overview of related work pertaining to the
development, evolution, and testing of DL systems. In Sec-
tion III, we elaborate on the methodology, detailing the process
of conducting the interviews and analyzing the collected
data. Section IV presents our key findings. Subsequently,
Section V discusses the implications and offers suggestions for
both researchers and DL developers. Furthermore, Section VI
addresses the limitations that apply to our study. Finally,
Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Deep Learning Software Development

A typical model training process for a DL system contains
the following steps [14]: First, developers collect the relevant
training dataset, tailored to the specific requirements of the
task at hand. Subsequently, they craft a program, which
encapsulates stages including data preprocessing, algorithm
selection, training mode configuration, and model architecture
design. By executing this program and iteratively training the
model with the dataset, the DL model progressively learns
and optimizes its internal parameters, known as weights, until
it meets the predetermined stopping criteria. In summary, the
primary components of the DL system can be conceptually
construed as the training dataset, the training program, and
the model weights acquired from the training process.

Given the increasingly important role of DL software, re-
searchers have conducted studies to investigate the challenges
when developing DL systems. Hill et al. [15] studied the
challenges faced by machine learning (ML) system developers
through interviews and pointed out the unique challenge of
establishing a repeatable process. Zhang et al. [16] surveyed
195 practitioners to understand the difficulties encountered by
DL system developers during different stages of the devel-
opment process, including resource management, requirement
analysis, design, implementation, testing & debugging, deploy-
ment, and maintenance. Amershi et al. [17] conducted in-depth
interviews with Microsoft’s internal ML system development
team to disclose high-level challenges encountered at each step
of the ML development lifecycle, especially, they identified
some unique challenges in ML systems, involving data man-
agement, model customization and reuse, as well as entangled
AI components. Zhang et al. [18] mined StackOverflow and

found the most prevalent questions faced by developers in
their programming processes include program crashes, model
migration, and implementation. They also identified five main
root causes of these questions which are worth further attention
of the research community.

B. Deep Learning Software Evolution

Like traditional software, DL systems also require contin-
uous evolution to optimize existing functionalities or meet
new requirements. Following the definition of software evo-
lution by Eijkelenboom [19], software evolution refers to the
cumulative effect of all changes made to a software system
throughout its entire lifecycle. In the context of DL systems,
evolution usually includes modifications at three levels: data,
program, and weights. At the data level, modifications may
involve updating the dataset (e.g., adding, deleting, or cleaning
data) [20] and refining the features (e.g., enriching, removing,
or replacing features) [21]. These changes are crucial for
enhancing its predictive capabilities or improving its perfor-
mance of new functionalities (e.g., new domains of data). At
the program level, modifications include processes such as
upgrading the model architecture (e.g., model updating [22] or
pruning [23]), adjusting the training paradigm or updating de-
pendent libraries and frameworks to their latest versions [24].
These changes are aimed at enhancing the model’s predictive
capabilities or reducing technical debt. Finally, at the weight
level, modifications typically involve direct manipulations of
the model’s weights to achieve performance improvement [25]
or defect fixing [26]. In practical scenarios, multiple aspects of
a DL system are often modified simultaneously (e.g., pruning
may affect both the model structures and the weights).

C. Deep Learning Software Testing

To ensure the quality and reliability of DL systems, many
studies have focused on how to test them. The statistical
nature of DL systems makes it challenging to conduct suf-
ficient testing [27]. DL system testing has been explored at
the program level [28], [29], model level [30], [31], and
library level [32], [33]. Several testing frameworks have been
proposed to uncover the vulnerabilities of DL systems. Xie et
al. [10] proposed DeepHunter, which uses neuron coverage to
guide the generation of test cases for neural networks. Sun et
al. [34] proposed DeepConcolic, which leverages the execution
of concrete inputs and symbolic analysis to synthesize new test
inputs. Wang et al. [35] proposed RobOT, automatically gener-
ating test cases to improve model robustness. Ma et al. [12] and
Humbatova et al. [36] proposed to design high-quality mutants
to improve mutation testing for DL systems. Ma et al. [37]
proposed DeepCT based on the insight of combinatorial testing
and built an LP-constraint-solving-based test generator. Tian
et al. [38] proposed DeepTest, utilizing metamorphic testing
to create synthetic test images representing realistic weather
or lighting conditions to trigger inaccurate behavior of self-
driving cars. Different from these works, which aim to test
the specific version of DL systems, we focus on investigating
how developers test the evolving DL systems in practice.



Some researchers have focused on the challenges of testing
DL systems. Riccio et al. [39] conducted a comprehensive
literature review to reveal the concerns regarding testing ML
systems, with a particular emphasis on crucial tasks such as
test case generation. Similarly, Tambon et al. [40] conducted
another literature review that not only analyzes testing as-
pects but also explores the challenges in model verification.
Marijan et al. [41] analyzed the limitations of current testing
approaches, with a focus on the absence of test oracles, large
input space, and high test effort for white box testing. While
these studies have presented an overview of challenges in DL
system testing, they focus more on academic issues and less on
the practical needs of the industry. Additionally, these studies
often fail to consider the critical context of testing the evolving
DL systems. This underpins the importance of our research,
which focuses on industry demands and aims to bridge the
gap between academia and industry.

III. METHODOLOGY

In this section, we describe our research questions, the
participant recruitment process, the interview design, and the
data analysis protocols.

A. Research Questions

To gain deeper insights on how developers can effectively
test deep learning systems as they constantly evolve, we
propose the following research questions.

• RQ1: What specific challenges do developers encounter
when testing evolving deep learning systems?

• RQ2: What solutions do developers employ to addressing
these challenges?

• RQ3: What kind of additional support do developers
need to facilitate their testing activities in evolving deep
learning systems?

B. Semi-Structured Interviews

Given the oversight in the existing literature regarding
testing evolving DL systems, we found it challenging to build
our study on a broad body of existing knowledge. Therefore,
we opted for semi-structured interviews, which offer great
flexibility to elicit unexpected insights [42], [43].

1) Interview Participant Recruitment: To recruit partici-
pants for this study, we used convenience sampling [44] by
reaching out to developers within our network via email and
other communication channels. Our selection criteria include
that 1) the participants must have at least three months of
experience in developing DL software, 2) the participants
need to be currently employed as part of a development team
for DL systems, and 3) since not all companies, especially
small companies, have specified DL systems testers. The
participants should have a reasonable understanding of the
testing process in their subjects. We sent a total of 77 invitation
letters, 55 of which were either ignored or outright rejected
due to privacy and confidentiality concerns. Ultimately, we
successfully recruited 22 participants from 21 companies,

working for varying industry sectors, and located in four
different countries.

The demographic information of the recruited participants
can be seen in Table I. Our interview participants are located in
China, Japan, the USA, and one other country the participant
preferred not to disclose. Participants possess a wide range of
work experience, ranging from 3 months to 12 years. Given
that DL is an emerging field, 12 of 22 participants have a
development experience of two to four years. However, we
made every effort to include senior developers and managed
to recruit six participants with more than five years of profes-
sional experience in DL software development. Moreover, our
participants work in different types of industry sectors, such
as Computer Vision (CV) and Natural Language Processing
(NLP), tackling a variety of tasks including autonomous driv-
ing and text summarizing. They also work with different types
of models, ranging from conventional DL models to Large
Language Models (LLMs). The diversity of our participants
in gender, location, experience, and job type could bring us
comprehensive insights into the questions we aim to answer.

2) Interview Process: In this interview study, our interview
questions are guided by our research questions, namely, we
focus on the challenges developers face, the solutions they
adopt to address the challenges, and the extra support they
need to better fulfill the testing requirements. To ensure that
our interview questions could lead to desired insights, we
conducted pilot interviews with three participants and refined
our interview questions. The three participants involved in the
pilot interviews were selected from the larger group of 22
interviewees. The list of the interview questions can be found
in our replication package [45], [46].

Currently, our department has not established an ethics
committee for Software Engineering research. To avoid ethical
issues, before the interviews, we asked the recruited developers
for their consent to participate in the interview and permission
to record the session. In addition, we carefully followed related
work [17], [43], [47], [48] and adopted several measures to
prevent ethical issues, i.e., using consent forms, anonymizing
data, and thoroughly explaining the goal/process/potential out-
come of our study to participants. We also informed them that
they had the right to withdraw from the interview at any time
and that their responses would be deleted.

Each interview spanned from 45 to 90 minutes. The inter-
views were conducted online since the participants are located
in different regions and countries. We used Tencent Meeting
to record each interview for initial transcription.

The first author thoroughly corrected the typos or inaccura-
cies found in the automated transcripts. Additionally, to uphold
the privacy of our participants, the first author anonymized
the transcripts and eradicated personal information, including
participant names, company names, and project details. In
some cases, we deliberately abstained from attributing specific
quotations, thereby preserving the anonymity of participants.



TABLE I: Details of Study Participants

Name Age Gender Experience Current Role Company Size* Domain Task Model

P1 20-29 Female 5.5 yrs DL Software Developer P CV Autonomous Driving DL Model
P2 20-29 Male 4 yrs Algorithm Engineer 5-10 CV Medical Imaging Segmentation DL Model
P3 20-29 Male 6 mths Project Manager ∼100 NLP Text Summarizing LLM
P4 20-29 Male 2 yrs Algorithm Engineer 3K+ NLP Machine Translation DL Model
P5 20-29 Male 2 yrs Algorithm Engineer 11K+ CV Warehouse logistics DL Model
P6 30-39 Male 5 yrs Database Algorithm Engineer ∼300 Tabular Data Database Query Prediction DL Model
P7 20-29 Female 2.5 yrs AI System Testers§ ∼10K+ CV Image Generation LLM
P8 20-29 Male 2 yrs Audio Algorithm Engineer ∼3K+ Audio Audio Recognition DL Model
P9 20-29 Male 2 yrs Algorithm Engineer ∼10K+ CV Medical Imaging Segmentation DL Model
P10 20-29 Male 1.5 yrs Algorithm Engineer ∼11K+ NLP Question Answering Robot DL Model
P11 40+ Male 12 yrs Tech Lead P Recommendation User Item Recommendation DL Model
P12 20-29 Male 2 yrs Algorithm Engineer ∼15K Recommendation Advertising Recommendation DL Model
P13 30-39 Male 10 yrs Senior Software Developer ∼700 Tabular Data Car Battery Monitoring DL Model
P14 30-39 Male 11 yrs CTO 400+ CV Defect Detection DL Model
P15 20-29 Male 3 yrs Algorithm Engineer ∼6K Recommendation User Item Recommendation DL Model
P16 20-29 Male 6 mths Testing Engineer§ ∼38K+ Code Test Case Generation LLM
P17 20-29 Female 3 mths AI System Testers§ ∼8K+ Recommendation User Item Recommendation DL Model
P18 20-29 Male 2 yrs LLM Algorithm Engineer ∼200 NLP Question Answering LLM
P19 20-29 Male 3 yrs Algorithm Engineer P Code Code Generation LLM
P20 20-29 Male 2 yrs Algorithm Engineer ∼100 NLP Text Summarizing LLM
P21 20-29 Female 2 yrs Staff Engineer ∼20 Tabular Data Intelligent Healthcare DL Model
P22 30-39 Male 10 yrs Tech Lead for Testing§ 300+ CV Autonomous Driving DL Model
* In the column of “Current Role”, § indicates that the interview participants are experienced DL testing experts.
* In the column of “Company Size”, P indicates that the interview participants chose not to disclose the number of employees due to privacy concerns.

C. Qualitative Data Analysis

We followed the coding guidelines established by Saldaña
[49] and utilized the computer-assisted qualitative data analy-
sis software Atlas.ti [50] to facilitate our coding process.
We performed inductive coding [51] at first and then per-
formed axial coding [52] to group the codes into hierarchical
themes. Following existing work [53], the modifications made
to the codebook were carefully documented. To ensure the
consistency of our categorization, two authors independently
coded the data and discussed it until a consensus was reached
on the categorization. To assess the extent of saturation in
our coding, following existing work [43], [54], we initially
sampled six interviews and set a stopping criterion of two
additional interviews with a saturation threshold of 95%.
Assuming now that we have coded n interviews, we examine
whether the codes extracted from these n interviews could
cover all codes extracted from n+2 interviews. If this is the
case, we consider that saturation has been achieved. Otherwise,
we code a new interview and check the saturation again. Given
this process, the minimum number of interviews that will
be conducted is eight. In total, we conducted 22 interviews,
although we found that saturation was achieved after coding
the 21st interview. We did continue to code the 22nd interview
in order to not waste the interview effort, although no new
codes emerged.

D. Data Availability

To protect the privacy of our participants, we are not
able to share the raw interview transcripts. However, the
consent letter, recruitment letter, interview questions, and the
final codebook exported from Altas.ti can be found in our
replication package [45], [46].

IV. RESULTS

A. Codebook

The final codebook consists of 102 codes, which are catego-
rized into six types of challenges (RQ1), five types of solutions
(RQ2), and five types of support needed (RQ3), as illustrated
in Fig. 1. The numbers in rectangles represent the number of
codes for each category, and the numbers in circles represent
the number of participants who provide specific insights.

B. RQ1: Challenges

Twenty-eight codes were extracted and categorized into
six types of challenges, including regression faults, well-
performing offline models failing online, difficulties in collect-
ing reliable test data, lack of mature approaches and metrics,
comprehending black box decision-making, and performance
preservation.

Regression faults. Facing regression faults is the most
common challenge faced by developers, mentioned by 16
developers. One common type of regression fault is related
to the metrics. This often occurs during system optimization,
when developers focus on improving certain metrics, other
metrics might unexpectedly degrade, as mentioned by P2:

“During an optimization of text summarization function
of our model, we collected new data for finetuning and
successfully improved the accuracy of text summarization from
more than 70% to more than 80%. However, subsequent
testing revealed that the correct matching rate between text
summaries and original paragraphs significantly decreased
from the original level to nearly 40%.”

The second type of regression fault concerns specific test
cases. After an update, the DL model might not be able to
correctly make predictions for some cases that it could handle
without issues previously. This is particularly problematic in
sensitive fields such as security, politics, or human healthcare:



Regression Faults

Well-Performing Offline 
Model Failing Online

Difficulties in Collecting 
Reliable Test Data

Lack of Mature 
Approaches and Metrics

Hard to Understand Black 
Box Decision Making

Performance Preservation

DL Fault Localization

Identifying Fault Type
Support for Automated DL 

System Debugging
Set Acceptable Thresholds

Test Case Selection
Integrating More Benchmarks/Metrics

More Efficient Regression Fault Detection
Unit Test for Individual Model

Mitigating Regression Faults

Bridging Online and Offline 
Testing

Reducing Collecting 
and Labeling Cost

Preventing Performance Drop

Improving Testing 
Effectiveness

Unit Test During Training
Regression Testing
Debugging Regression Faults
Model Decoupling/Ensemble

Support for Improving 
Testing Effectiveness

Support for Facilitating 
Data Labeling

Support for Code and Data 
Management

Support for Improving 
Testing Tools Usability

ChallengesSolutions Support
332841

Automated Test Labeling Tool
Dedicated Labeling Team

Better Labeling Process

Model Version Control
Data Version Control

Data Sharing Platform

Labeling Prioritization Strategies
Labeling Errors Elimination

Interpreting White-box Information
Better Documentation and Logs

A/B Testing

Differential Testing in Model Building
Acceptance Testing
Model Selection
Involving User Feedback for Testing

Updating Offline Test Cases
Saving Special Test Cases
Performance Monitoring

Performance Testing

Counterfactual Evaluation

Using LLM to Assist labeling

Prioritizing Test Cases for Labeling
Using LLM to Generate Test Cases

Reusing Bad Cases

19 16 12

13

14

5

7

3

14

16

15

12

5

14

11

12

Fig. 1: The Findings Summarized from the Interview

“After the update, we have to ensure that all test cases in-
volving national laws are correctly predicted, as any omission
may lead to legal disputes.” -P8

Well-performing offline model failing online. The DL
model that passed offline testing may not perform well in
online applications. Specifically, P11 points out:

“The (online-offline) gap may come from data collection
methods, differences in data update frequency, or mismatches
in timestamps. For recommendation systems, especially during
specific periods such as seasonal changes, this online-offline
difference is particularly significant.”

P11 further explained this issue with the example of
COVID-19. The recommendation system well tested offline
did not perform as expected due to dramatic changes in user
behaviors and social interaction patterns during the pandemic.

Difficulties in collecting reliable test data. As DL systems
continue to evolve, many enterprises opt to establish annota-
tion teams to continuously label new test cases, safeguarding
the model performance. However, the process of collecting
and labeling these test cases is costly, as commented by P3:

“We once recruited an annotation team to label the summa-
rization of articles, with each article costing upwards of 200-
300 RMB (approximately equivalent to 27 to 41 USD). Though
expensive, the labeling quality is not always satisfying.”

Another issue in obtaining reliable test data is the subjec-
tivity of labeling test cases:

“As for the AI-generated images, whether they look good
or not is really up to each person’s taste. Different users will
label them different scores because it’s so subjective.” - P7

Even if all these issues are resolved, there is a still major
obstacle to hinder developers in their efforts to collect a
large amount data conveniently and rapidly, which is privacy
concerns. For example, for collecting test cases, P21 shares:

“In the medical domain, for tasks such as predicting patient
survival time, obtaining test cases is really hard. Part of the
problem is that patient information is sensitive, so we have
to be careful with privacy. In Japan, they’ve got really strict
rules about protecting patients’ privacy, which makes it really
hard for hospitals to share data with each other. And when
we need to collect more data from other hospitals for testing,
well, let’s just say it’s really hard.”

Sometimes, when there are data available, it is pre-
processed, making it difficult to label, as mentioned by P17:

“(In QR code recognition), the images are related to
privacy. We can’t directly see the images but only get the
embedding, which makes it nearly impossible to label.”

Lack of mature approaches and metrics. Some developers
complain that although academia is constantly proposing DL
testing approaches and metrics, these methods may not be
applicable in real industrial scenarios:

“For (mechanical parts) defect detection tasks, the scenario
is complex, with numerous elements present in the images to
be recognized. In addition, defects can appear on objects of
different materials and shapes, making it difficult for existing
testing methods to cover possible scenarios and accurately
assess performance in these scenarios. While using LLM to
generate images for testing may be useful, it risks introducing
new biases into the testing results. - P14

Moreover, developers often do not know what approaches
they can use to test DL systems, as mentioned by P7:

“In traditional software, we have regression testing. For
DL systems, we don’t know any mature and widely-used
approaches to effectively test them after model evolution.”

The lack of intuitive testing criteria also poses issues, as
suggested by P8:



“I know testing criteria like neuron coverage, but we never
use it in our testing process. We cannot understand the direct
correlation between a neuron’s activation state and specific
words or semantics in our application scenarios. We don’t
know what it means to cover a neuron.”

Comprehending black box decision making. DL sys-
tems typically comprise a large number of parameters in-
terconnected through complicated computations, making it
challenging to directly analyze their internal decision-making
processes. Therefore, developers and testers often resort to
end-to-end black-box testing approaches, as mentioned by
P13:

“Traditional software usually has clear logic and is easier
to interpret. When we get the test report, it’s easier to trace the
exact lines of code causing the bugs. But a DL model is like
a black box; it’s really hard to understand what’s happening
inside, and there are so many things that can lead to buggy
performance, like the training process, the model design, and
the quality of training data. That makes it really tough to figure
out how to debug just by looking at the test results.”

The issue intensifies when the model comparison is needed:
“It’s difficult to compare and explain the differences be-

tween the decision-making logic of different models, let alone
measuring the changes during model evolution.” - P10

Performance preservation. Sometimes, conducting fea-
ture evolution (e.g., adding or deleting features) or updating
model structures (e.g., increasing the number of layers) can
significantly impact the performance, such as inference time
and memory usage. However, developers often pay more
attention to the performance related to functional requirements
(e.g., prediction accuracy), neglecting the performance of non-
functional requirements (e.g., time needed for prediction):

“They (hospital medical staff) need our system to quickly
provide (bone age) prediction results in their daily work,
especially when using devices with limited computation capa-
bilities. If the model’s performance decreases after updating
the structure, medical staff may have to wait too long and
complain to us.” - P2

C. RQ2: Solutions

The solutions, consisting of 19 pieces of advice summarized
from 41 codes, aim to address five types of challenges.

Mitigating regression faults. Regression faults frequently
occur in industrial applications. To prevent such faults, de-
velopers have proposed various approaches, which can be
categorized into three stages: Pre, In, and Post Evolution.

In the pre-evolution stage, some developers propose priori-
tizing functions based on their importance according to the re-
quirements and setting acceptable thresholds for performance
degradation for unimportant ones:

“In autonomous driving, we think that common scenarios
related to vehicle recognition and traffic are more critical,
while a certain degree of decline in the recognition accuracy
of secondary elements, such as trees and streetlights, is
acceptable.” - P22

During the evolution process, developers employ methods
such as continual learning to assist training and closely moni-
tor the current model’s performance during training to decide
whether it is time to stop:

“We conduct tests during the training of a new model. We
monitor details like the convergence rate every 100 epochs
and compare it with the performance of the previous (version
of the) model at the same epoch to check if the performance of
the monitored metrics is degrading. Then, we decide whether
to continue with the training.” - P8

In the post-evolution stages, developers have recommended
conducting thorough regression testing on DL systems:

“After each model update, we evaluate its effectiveness on
existing test sets. If critical functions deteriorate beyond our
acceptance threshold, we will roll back to the previous version
of the model.” - P18

Given the high cost of training, some developers use
debugging to eliminate regression faults:

“We really try hard to find the root causes of those re-
gression faults, but it’s tough sometimes. If we can’t directly
find them, we may analyze which functions’ performance is
not good enough and add relevant data to alleviate the issue,
even though it might lead to overfitting.” - P8

Exploring other compensating approaches is another way
to alleviate regression faults, and one such example is
decoupling and integrating old and new models:

“After an update, our text summarization model struggled
to balance the performance for short and long texts. We finally
decoupled the model into two independent ones. We used
different models and prompts for short and long user inputs,
respectively, to effectively resolve the issue.” - P3

Bridging online and offline testing. During our interviews,
developers have proposed several strategies for bridging online
and offline testing, which encompass three key approaches:
1) A/B Testing; 2) Updating Offline Test Cases; and 3)
Supervision.

Regarding how to conduct A/B Testing, P15 outlines their
comprehensive process:

“For our recommendation models, after passing offline
testing, we deploy them online with a small fraction of user
traffic (around 0.25% or less). Once we confirm that the
model’s overall performance metrics are satisfactory online,
we gradually increase the traffic allocation to the new version
of the model, typically in increments of 0.25%, 0.5%, 1%,
5%, 10%, 20%, 50%, and ultimately 100%. Throughout this
process, if at any stage the model is unable to make correct
recommendations, we immediately roll back to the original
model. After the new model has fully replaced the old one
and consistently demonstrates stable performance over time,
we designate it as the default model. This entire process is
referred to as solidification.”

In addition to the above testing approaches, it is crucial to
assess the similarity in distribution between offline and online
test cases and update offline test cases when needed. This pre-
vents discrepancies between offline and online performance:



“We employ a test case lifecycle strategy. We record the
timestamp of each test case and set a retention threshold. When
the model is updated, test cases whose saving time exceeds this
retention threshold are removed. By leveraging this threshold,
we ensure a balance between using new test cases and
retaining certain older test cases, thereby maintaining the
comprehensiveness and representativeness of our testing. For
database-related tasks, our typical retention threshold ranges
from 3 to 6 months.” - P6

P15 adds insights on which tests to update:
“For recommendation tasks, we generally prefer the latest

test cases. However, we must also consider special days such
as Singles’ Day and Black Friday (shopping carnivals), when
there’s a surge in purchases. During those times, we reuse test
cases from the exact same period last year for testing.”

Lastly, a robust online performance monitoring mechanism
is essential to prevent data and concept drift:

“We continuously monitor the model’s performance on data,
tracking metrics like the average and variance of certain
values, and conducting counterfactual evaluations for early
warning. This helps us to decide whether to update the model
or test cases.” - P11

Improving testing effectiveness. Developers are seeking
to further enhance testing efficacy to ensure the quality of DL
systems throughout their continuous evolution. P15 illustrated
how they applied differential testing in model building:

“We initiate testing during the model-building process. For
example, even for the same model structure, we use different
libraries and languages, or we just put it on different devices,
such as CPUs and GPUs, to construct a model with an
identical structure and then employ differential testing to check
whether the training results of these two models are similar.”

P19 shared their experience in terms of acceptance testing:
“We conduct Alpha, Beta, and Gamma testing. Firstly,

Alpha testing is the self-validation stage to ensure the model’s
basic functions and performance meet expectations. Beta
testing focuses on a deeper validation of the model’s core
functionalities to ensure they meet requirements. Lastly, during
Gamma testing, in addition to continuing to test core function-
alities, we introduce monkey testing to simulate users’ random
and unusual queries, comprehensively assessing the model’s
responsiveness and stability.”

P14 shared some tips on model selection:
“We provide testers with several models that we believe

perform well. They may need to select test cases to differentiate
their performance and select the best one for deployment.”

Given that high scores on some testing metrics do not mean
good performance, especially in NLP domains, multiple devel-
opers incorporate feedback from users as the gold standard:

“For summarization tasks, if errors occur in the first few
sentences, users will lose trust in the subsequent detailed
summaries. No metric can surpass user feedback, and we need
to regularly conduct user surveys.” - P3

Reducing test case collecting and labeling cost. Test-
ing of DL systems often requires a large amount of test
data, but the cost of collecting and labeling is high. To

reduce the cost of labeling, P14 shared their experience in
using LLMs to assist labeling:

“We originally relied on manual labeling, but now we are
trying to use LLM to assist in labeling, as well as double-
checking the labeling results.”

The benefit of LLMs is not limited to assisting labeling,
developers can use LLMs to generate test cases:

“If there is a real lack of test cases, LLM can be used to
generate some test cases to initiate the training and testing of
this project. After collecting real data provided by users, the
test cases and model can be updated.” - P5

P6, instead, focused on prioritizing test cases for labeling:
“For our task, correctly identifying slow queries with opti-

mization potential is more meaningful. So, test cases are easier
to wrongly predict as the slow queries are more important to
us. We consider using prioritization strategies and fingerprint
matching techniques to find these test cases for labeling.”

Given the limited labeling resources, reusing bad cases
could be an effective way to save the effort:

“We have established a bad case library to store and
manage representative fault-triggering cases encountered pre-
viously. These cases are classified by tags to help us quickly
find cases related to specific faults to improve the model
performance accordingly. For example, in our tasks (animal
imaging generation), we will collect all errors related to ears
and label them with ear-related tags. After each model update,
we will reuse these bad cases to test the new model to see if
its performance has been optimized or deteriorated.” - P7

Preventing performance drop. Developers believe that
during the model evolution, it is necessary to pay close
attention to non-functional requirements, such as inference
time and memory usage. To this end, developers stress the
importance of performance testing after evolution:

“After updating features and model structures, we conduct
performance testing. We send requests to the model to check
that the response time of both the coarse-grained and fine-
grained recommendation models does not exceed the preset
millisecond threshold. In addition, we also conduct stress
testing to simulate user traffic peak scenarios to ensure that
the QPS of the model does not decrease by more than 5%, in
order to maintain service stability.” - P15

P15 further indicated that for feature evolution, they prefer
to replace old features with new ones to maintain the relative
stability of the total number of features. This can prevent per-
formance degradation caused by changes in model structure.

D. RQ3: Support

In terms of support developers needed to improve their
testing activities, we extracted 16 actionable items from 33
codes, which were classified into five different categories.

Support for automated DL system debugging. The most
frequently mentioned support needed is automated debugging
tools. Specifically, 12 of the 22 participants expressed that their
current test results are insufficient for effectively identifying
and fixing regression faults in DL systems. They urgently need
tools that can accurately locate the faults:



“Our debugging process relies heavily on experience,
and test reports are not very helpful. For instance, after an
update, we noticed that the model was incorrectly outputting
German verbs in lowercase when they should be capitalized.
We suspected that the root cause might be that the developers
accidentally lowered all letters of verbs in new data, causing
a conflict with the original training data. While this was a
straightforward case to debug, sometimes when the model
outputs strange words, we can’t even guess which stage
introduced the bug. The sources of errors can be numerous,
including the data, hyperparameters, and the training process.
[. . . ] Compared with bugs in the code, faults from training
data are hard to debug. There are too many samples to check.
We desperately need a tool.” - P8

P7 instead focused on the identification of fault types:
“For our tasks, like animal image generation, we need a

tool to precisely identify the type of fault, such as whether
it’s an issue with the ears, color, or the number of legs in the
generated images. Identifying the specific defect for each test
case would significantly enhance our ability to find the root
cause and debug the model.”

While there are already some debugging tools for DL
systems documented in the literature, the industry has been
hesitant to adopt them in practice. Many developers express
concerns about their effectiveness in real-world industrial
scenarios. P7 raised her concerns that using these tools might
introduce new problems, such as overfitting the current training
set, which could be counterproductive. That is, developing
tools is one thing, and how to gain trust from developers in
using these tools is another story.

Support for improving the usability of DL testing tools.
Some developers believe that the existing DL testing tools
suffer from low usability, which is mainly reflected in the
following two aspects:

First, these tools have a steep learning curve. Many testing
approaches rely on white-box information to improve testing
effectiveness. Unlike traditional software, whose white-box
information is mainly source code, the white-box information
of DL systems is usually tensors with complicated semantics.
Therefore, enhancing the visualization and interpretability of
this information can improve the ease of use of the tools, as
suggested by P21 who worked in a cross-disciplinary field of
medical care and AI:

“It is very difficult for me and my colleagues to understand
the specific meaning of each tensor, and the learning curve for
using these tools is really steep. I would appreciate it if they
(tool developers) could show me what these tensors mean.”

Second, the lack of comprehensive documentation and logs
undermines the usability of these tools. Many developers of
testing tools and DL systems do not pay attention to providing
documentation and logs, which increases the learning cost for
end users and testers:

“The quality of existing tool documentation varies greatly,
and it is difficult to configure tools based on these unclear
documents and apply them to our models.” - P4

Support for improving testing effectiveness. The de-
velopers also emphasize that they need more effective ap-
proaches to test DL systems during the evolution pro-
cess. Some developers believe that there is a need for
more efficient testing methods to detect regression bugs.

“If, after model evolution, we can effectively determine
whether critical functionalities have introduced regression
faults, it would enhance our testing effectiveness, although
I’m not sure if it’s easy to achieve that.” - P14

While this is indeed a challenging problem, new approaches
like LLM-based test case generation techniques might help to
reveal fault like regression faults in a shorter time period. In
reality, DL systems can be quite complex, and some tasks
might require not just one but multiple models to complete.
Relying solely on end-to-end black-box testing is ineffective.
In this case, unit tests for individual models would come in
handy:

“Currently, many tasks rely on a series of models working
in concert. As such, we may not only need end-to-end testing
but also unit tests for each model to guarantee the testing
effectiveness.” - P10

Another issue is that the amount of test cases is huge, and
there is not enough time to run all the tests. Therefore, they
would expect approaches for test case selection:

“In our ad recommendation task, we have a large number of
test cases, reaching billions or even trillions. Running tests for
our DL system might be quicker than for traditional software,
but with all these test cases, it still adds up to a lot of time.
Therefore, we need to either select a subset of test cases to run
or find some way to estimate model performance with fewer
predictions.” - P15

Moreover, existing metrics, testing approaches, and bench-
marks are scattered across multiple platforms. Despite efforts
by some platforms to integrate these resources, they struggle
to keep them updated in a timely manner. P4 envisions a more
integrated LLM testing platform:

“All metrics and testing methods are proposed by different
institutions and papers. We expect an LLM testing platform or
tool that can integrate multiple benchmarks and metrics.”

Support for facilitating data labeling. According to our
interviews, a significant amount of time was dedicated to
collecting and labeling test cases. P13 emphasizes the need
for automated labeling tool:

“We need more automated or assisted labeling tools to
support domain experts, especially when dealing with niche
data domains. This would enhance labeling efficiency and ease
the burden on experts.”

Other developers have different opinions on how to handle
to time-consuming labeling process. For example, P3 envisions
a dedicated labeling team to help with this task:

“Enterprises should try to establish a labeling team to
continuously provide data during the evolution process, if
possible because high-quality data is very important for DL
training and testing.”

However, P20 focuses more on a data sharing platform:



‘All departments involved in model training should share
their high-quality data on a public platform within the enter-
prise to build a general dataset so that all other departments
to select the data they need for testing from it.”

Furthermore, P17 stresses the necessity of better strategies
for prioritizing the test case labeling:

“If our goal is to detect more bugs in DL systems, we may
need test prioritization and selection strategies. By labeling the
test cases which are more likely to trigger faulty behaviors,
such as those triggering regression faults, being closely related
to critical functions, or capable of inducing specific defect
types, we can more efficiently allocate resources and improve
testing efficiency.”

In practice, not all labeled data possess high quality. Five
developers expressed their concerns about the quality of test
cases, believing that it would directly affect the accurate
evaluation of model effectiveness. P17 expects a tool to
eliminate labeling errors:

“Even with manual annotation of data, it is easy to intro-
duce labeling errors. Therefore, if there were tools to assist
us in eliminating such errors, including incorrect labeling and
bias in test data, it would be extremely beneficial.”

P8 further elaborates on a potential problem in the current
annotation process and longs for a better labeling process:

“The current annotation process often relies on tools to
provide suggested labels first, and then the annotators check
and provide final annotations. However, some of these tools
have design issues that can trick annotators into making
specific types of errors. Therefore, annotators should be
cautious when using these tools and should not rely solely
on their suggestions. At the same time, we urgently need
to establish a better process for evaluating the correctness
of annotations, and develop tools that can effectively detect
errors in annotated data, to ensure the quality of test data.”

Support for code and data management. 10 devel-
opers mentioned that they need tools for code, data, and
test management for DL systems. Some developers advocate
that the development of DL systems should get inspira-
tion from traditional software development, such as intro-
ducing continuous integration and deployment (CI/CD) to
document each version of the model, helping effectively pre-
vent regression faults:

“In DL systems, updates are not limited to code but also
include data sets and test sets. So, every time we make a
change, we should conduct regression testing through the
CI/CD process. This way, we can be sure that our new version
of the DL model is regression-free.” - P20

Similarly, some other developers have voiced the need for
better data version control. They emphasize that one of the
key differences between DL systems and traditional software
systems is that they not only involve the management of code
versions but also involve the management of data versions.
Therefore, strict management and backup strategies need to
be implemented for both code and data to ensure the ability
to reproduce models:

“We not only need to track the history of code changes to
ensure that we can roll back to previous versions or merge
changes from different developers, but we also need to pay
special attention to the recording of data versions, including
data cleaning methods, data labels, and test cases, to maintain
the accuracy, integrity, and consistency of data.” - P2

V. DISCUSSION

A. Findings Comparison with Exiting Work

In Section II, we introduced related DL Testing work.
They primarily focus on academic issues (e.g., generating
tests to maximize coverage), paying less attention to the
practical needs of industry. Moreover, they often overlook the
critical context of testing evolving DL systems. For instance,
Marjin et al. [41] mentions testing challenges, i.e., large input
space, oracle absence, and high white-box testing efforts,
through literature reviewing. In contrast, our study, from a
practitioner perspective, reveals that developers primarily face
regression faults, online-offline differences, and the cost of
continuously collecting reliable tests. These findings differ
significantly from those reported in existing academic work.
Specifically, Amershi et al. [17] primarily concludes with one
solution about automatically creating test sets for DL systems.
However, our solutions offer a more detailed perspective on
testing, encompassing five categories, including strategies for
mitigating regression faults. Compared with existing works,
we are the first to give a comprehensive overview of DL
Testing covering challenges, solutions, and support.

B. Differences Between Testing DL and non-DL Software

DL systems evolve differently from non-DL software, in-
volving more changes at feature/data/workflow levels rather
than at the code level. They are data-driven and hard to
interpret. Specifically: Regarding challenges, DL systems
require more test data. The difficulty in collecting reliable
test data differs from that of non-DL software. Since DL
systems are hard to interpret, exploring effective ways to
understand black-box decision-making to facilitate testing
is challenging. Regarding solutions, developers acknowledge
the difficulty in avoiding all regression faults. Consequently,
they set acceptable thresholds based on the importance of
requirements to protect important functionalities. Additionally,
they use LLM to assist labeling to reduce labeling costs,
which is uncommon in non-DL software. Regarding support,
DL faults and their root causes differ from those in non-
DL software. Therefore, developers need more specific testing
and debugging approaches for DL systems. Additionally, to
collect enough tests, developers require better teams, tools,
and working processes for labeling, whereas non-DL software
often does not have such concerns.

C. Implications for Researchers

The DL testing and debugging approaches are not
generally used in industry. The reluctance of developers to
adopt DL testing approaches from academia primarily stems
from their perception of these methods as immature.



Old Model

New Model

Unit Testing in 
Training Process 

Regression 
Testing 

Acceptance 
Testing

Performance 
Testing

Debugging

Deployment A/B Testing Solidification Monitoring

Rollback

Fig. 2: The Recommended Testing Framework of Practice

There are a few concerns: First, there are hurdles in utilizing
the tools themselves due to various reasons. For example,
these tools lack comprehensive documentation (P4) and proper
logging (P11). Additionally, the tools are not kept up-to-date
or seamlessly integrated into existing platforms (P4), further
hindering their adoption. Second, developers are uncertain
about the effectiveness of these academic approaches in real-
world scenarios. This stems from the fact that researchers often
do not have the resources to conduct evaluations in industry,
leading to a gap in demonstrating their applicability and impact
in real-world scenarios. Consequently, we urge researchers to
consider conducting comprehensive comparisons with industry
tools in more realistic settings if possible. Separately, another
area of concern revolves around debugging tools, mentioned
by 63% of participants. These developers refrain from using
available tools for two primary reasons: first, they are unsure of
their effectiveness (P7), and second, they fear that these tools
may cause unpredictable side effects, e.g., overfitting offline
test sets or generated data and hurting other properties, limiting
their usefulness in fixing practical faults (P12).

Opportunities in regression testing for DL systems.
Regression faults are often overlooked in the development
of DL systems. As the field evolves at an ever-increasing
pace, it is particularly important to reduce the occurrence
of regression faults during DL system evolution. Currently,
regression faults can be roughly divided into two categories:
erroneous predictions on some individual test cases and per-
formance degradation on certain functions. Regression faults
on individual test cases are difficult to avoid, and in key areas
such as healthcare, politics, law, and security, it is particularly
critical to avoid regression faults on individual test cases,
as these errors may lead to serious consequences (P21 and
P8). In industrial practice, performance degradation is more
common, and developers need to ensure that core functions
are not affected after evolution. For example, in the field of
autonomous driving, the accuracy of vehicle recognition is
more important than that of tree recognition (P22), and the
accuracy of common scenarios is more important than rare
scenarios (P1). How to achieve a balance between different
functions remains a major challenge in the industry.

With the development of DL systems, from simple small
models to complex LLM, the evolution speed and types
have shown a significant growing trend. While data evolution

(P3), model structure evolution (P2), and feature evolution
(P21) are common evolution types traditionally, more complex
evolution scenarios have emerged. For example, there are
innovative workflows in the field of LLM such as Retrieval-
Augmented Generation (RAG) [55] and Low-Rank Adaptation
of Large Language Models (LoRA) [56] (P16). Introducing
new agents (e.g., agents for optimizing prompts for follow-up
prediction processes) in the workflow to further improve model
performance is becoming increasingly popular (P18). Due to
different evolution methods, the causes of regression faults
become more diverse, e.g., the faults caused by model structure
evolution and data evolution might be entirely different. It
is essential to understand these root causes to improve the
effectiveness of testing, fault localization, and model fixing.

In short, such frequent and complex evolution has brought
new opportunities for researchers. Future research could focus
on: 1) how to ensure that important functions and individual
test cases are not harmed during evolution; 2) how to effec-
tively disentangle different components of DL systems and
quickly diagnose the issues behind regression faults, and 3)
how to identify evolution-relevant test cases among a large
number of test cases for improving testing efficiency.

Opportunities in augmenting interpretation with DL
testing. The black-box nature of DL often forces developers
to rely heavily on end-to-end black-box testing due to the
difficulty in comprehending the semantics of complex tensors.
Despite the existence of interpretation methods (e.g., Grad-
CAM [57]) and tools (e.g., CNN Explainer [58]), there are
limited efforts to use them to facilitate testing. One key reason
is the challenge of effectively using these tools to improve test
effectiveness, as the impact of interpretability metrics on test
adequacy and error detection capabilities has not been well-
studied. Using interpretability metrics can help practitioners
better understand the changes in the decision-making process
of DL systems and derive more targeted and effective testing
strategies. Moreover, we need to lower the bar for using such
tools as much as possible. Providing users with exhaustive
documentation, error logs, and practical usage examples can
significantly enhance the user-friendliness of these tools and
increase their accessibility to a broader range of developers.

D. Key Takeaways for Industry Practitioners
The testing framework for evolving DL systems. To

enhance testing effectiveness, we present a practical testing



framework (Fig. 2) integrating the insights from the interviews.
First, during the training phase, developers should consider

conducting unit testing, including comparing the model with
its previous version regarding the performance on specific
epochs, to ensure the training effectiveness (P8, P15). Upon
successful training, regression testing should be conducted to
identify any potential regression faults, followed by perfor-
mance testing (P2), acceptance testing (P19), and essential
offline testing to effectively guarantee the model’s quality.
After deployment, developers should embark on online testing,
specifically A/B testing (P15), to assess the model’s real-world
performance. If the model passes the A/B test, it can be safely
updated. However, ongoing monitoring of online performance
(P11) and user feedback (P3) remains crucial. If the DL model
fails any testing phase, the failures should be reported to
the developers for debugging (P8), and the system should
roll back to its most recent stable version (P18) to maintain
operational integrity. This framework is in its early stages,
requiring further studies to enrich and verify it, ultimately
guiding future recommendations for practitioners. Our study
lays a crucial foundation for such endeavors.

Different kinds of regression testing frameworks. In
traditional software, regression testing tends to reuse test
cases. However, in DL, test cases should be updated due to
differences between online deployment and offline training.
Generally, the frequency of test case updates varies depending
on the difficulty of collecting and labeling new test cases.
For example, in the medical field, it is difficult to collect
test cases, so there is little updating of test cases (P21); in
recommendation systems, due to the huge amount of avail-
able data, the developers basically always use the latest test
cases and even need sampling to complete the entire testing
(P15). For most common tasks, it is necessary to gradually
accumulate new test cases (P16) or replace existing test cases
with new ones (P6). Industrial developers can choose different
regression testing case update strategies, including deciding
how to discard outdated test cases and continue to label test
cases in regression scenarios, based on business requirements.

VI. THREATS TO VALIDITY

Threats to construct validity concern the relationship be-
tween theory and observation. The years of experience could
impact how developers view the challenges and the strategies
they would propose. We have invited participants with a wide
range of experience. However, we acknowledge that potential
bias might be introduced given the very different backgrounds
of the participants in the interviews. Another threat is related
to the design of interview questions, namely if the questions
could guide developers to provide meaningful insights. To
ensure that the responses could answer our research questions,
we conducted a pilot study with three participants and refined
the interview questions based on their responses.

Threats to internal validity concerns the selection bias in
this study and the subjectiveness of the authors during the
interview and coding processes. For the prior issue, due to
privacy concerns, not all participants accepted our interview

invitations. Therefore, we might miss out on some insights
directly impacting the interests of the companies. This is
inevitable in such studies. For the latter issue, there is a
possibility that the authors might misinterpret the responses
of participants. To mitigate this issue, two people indepen-
dently coded the transcripts and discussed the conflicts until
a consensus was reached. To avoid imposing our opinions on
developers during the interviews, we thoroughly explained the
goal of our study and asked for clarifications when we were not
entirely sure what the participants meant to better understand
the perspectives of the participants.

Threats to external validity concern the generalizability of
our findings. We recruited 22 DL developers, which might
not represent the whole DL software community. However,
these developers are from companies of different sizes and
sectors in various countries, and they work on different tasks in
different roles. This to a certain extent mitigates the threats to
generalizability. We acknowledge that our participants are pre-
dominantly from medium to large companies, with a smaller
representation from small companies. This is partly due to
difficulties in reaching out experts who are both experienced
in DL system evolution and in DL system testing. It is worth
noting that not all companies have specific testers for DL
systems, especially small companies. However, we believe
that the numerous challenges presented in this paper are also
frequently encountered by practitioners in small companies.
Solutions presented, along with real-world examples from
other practitioners, may serve as a learning resource and
inspire innovative solutions among them.

VII. CONCLUSION

Testing evolving DL systems has been challenging in prac-
tice. To provide insights on how developers can effectively test
their DL systems along with system evolution, we conducted a
semi-structured interview with 22 DL developers to understand
the challenges they face, propose practical solutions to these
challenges, and reveal future research and practical opportu-
nities for better testing support.

Our results, accompanied by real industry examples, can
serve as a reference for developers when testing evolving DL
systems. Our future work will focus on converting the insights
gained from interviews to concrete approaches and tools that
could benefit developers in real-world industrial scenarios.

ACKNOWLEDGMENT

We thank all the interview participants and are grateful
for the suggestions from the reviewers. We specifically thank
Zhenfei Huang for his assistance in managing the participants,
transcribing the recordings, and checking the codebook. We
also thank Yushan Xiao, Qiyu Li, Shunda Pei, Zuowei Cui,
and Sisi Li for helping recruit interview participants. This work
would not have been possible without their invaluable support.

This work is partially supported by the National Natural Sci-
ence Foundation of China (Grant Nos. 62472310, 62322208,
62232001, 12411530122).



REFERENCES

[1] X. Zhu, H. Wang, H. You, W. Zhang, Y. Zhang, S. Liu, J. Chen, Z. Wang,
and K. Li, “Survey on testing of intelligent systems in autonomous
vehicles,” Journal of Software, vol. 32, no. 7, pp. 2056–2077, 2021.

[2] R. Tozuka, N. Kadoya, S. Tomori, Y. Kimura, T. Kajikawa, Y. Sugai,
Y. Xiao, and K. Jingu, “Improvement of deep learning prediction model
in patient-specific qa for vmat with mlc leaf position map and patient’s
dose distribution,” Journal of Applied Clinical Medical Physics, p.
e14055, 2023.

[3] X. Chen, X. Hu, Y. Huang, H. Jiang, W. Ji, Y. Jiang, Y. Jiang,
B. Liu, H. Liu, X. Li et al., “Deep learning-based software en-
gineering: Progress, challenges, and opportunities,” arXiv preprint
arXiv:2410.13110, 2024.

[4] Y. Kang, Z. Wang, H. Zhang, J. Chen, and H. You, “Apirecx:
Cross-library API recommendation via pre-trained language model,” in
EMNLP (1). Association for Computational Linguistics, 2021, pp.
3425–3436.

[5] Z. Huang, J. Chen, J. Jiang, Y. Liang, H. You, and F. Li, “Mapping
apis in dynamic-typed programs by leveraging transfer learning,” ACM
Trans. Softw. Eng. Methodol., vol. 33, no. 4, pp. 102:1–102:29, 2024.

[6] C. Gartenberg, “Apple’s face id with a mask works so
well, it might end password purgatory,” Accessed: 2024.
[Online]. Available: https://www.theverge.com/2022/2/2/22912677/
apple-face-id-mask-update-ios-15-4-beta-hands-on-impressions

[7] T. Gerken, “Dpd error caused chatbot to swear at customer,”
Accessed: 2024. [Online]. Available: https://www.bbc.com/news/
technology-68025677

[8] News, “Gpt-4 is getting worse and worse every single update,”
Accessed: 2024. [Online]. Available: https://community.openai.com/t/
gpt-4-is-getting-worse-and-worse-every-single-update/

[9] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad:
Gan-based metamorphic testing and input validation framework for
autonomous driving systems,” in ASE. ACM, 2018, pp. 132–142.

[10] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao,
B. Li, J. Yin, and S. See, “Deephunter: a coverage-guided fuzz testing
framework for deep neural networks,” in ISSTA. ACM, 2019, pp. 146–
157.

[11] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang,
“Prioritizing test inputs for deep neural networks via mutation analysis,”
in ICSE. IEEE, 2021, pp. 397–409.

[12] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, and Y. Wang, “Deepmutation: Mutation testing of deep
learning systems,” in ISSRE. IEEE Computer Society, 2018, pp. 100–
111.

[13] M. Ojdanic, E. O. Soremekun, R. Degiovanni, M. Papadakis, and Y. L.
Traon, “Mutation testing in evolving systems: Studying the relevance of
mutants to code evolution,” ACM Trans. Softw. Eng. Methodol., vol. 32,
no. 1, pp. 14:1–14:39, 2023.

[14] I. H. Sarker, “Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,” SN Comput. Sci., vol. 2,
no. 6, p. 420, 2021.

[15] C. Hill, R. K. E. Bellamy, T. Erickson, and M. M. Burnett, “Trials
and tribulations of developers of intelligent systems: A field study,” in
VL/HCC. IEEE Computer Society, 2016, pp. 162–170.

[16] X. Zhang, Y. Yang, Y. Feng, and Z. Chen, “Software engineering
practice in the development of deep learning applications,” CoRR, vol.
abs/1910.03156, 2019.

[17] S. Amershi, A. Begel, C. Bird, R. DeLine, H. C. Gall, E. Kamar,
N. Nagappan, B. Nushi, and T. Zimmermann, “Software engineering
for machine learning: a case study,” in ICSE (SEIP). IEEE / ACM,
2019, pp. 291–300.

[18] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical study of
common challenges in developing deep learning applications,” in ISSRE.
IEEE, 2019, pp. 104–115.

[19] E. Eijkelenboom, “Trends in software evolution,” Ph.D. dissertation,
Citeseer, 2005.

[20] H. You, Z. Wang, J. Chen, S. Liu, and S. Li, “Regression fuzzing for
deep learning systems,” in ICSE. IEEE, 2023, pp. 82–94.

[21] S. J. Chen, Z. Qin, Z. Wilson, B. Calaci, M. Rose, R. Evans, S. Abraham,
D. Metzler, S. Tata, and M. Colagrosso, “Improving recommendation
quality in google drive,” in KDD. ACM, 2020, pp. 2900–2908.

[22] Z. Li, M. Zhang, J. Xu, Y. Yao, C. Cao, T. Chen, X. Ma, and
J. Lu, “Lightweight approaches to DNN regression error reduction: An

uncertainty alignment perspective,” in ICSE. IEEE, 2023, pp. 1187–
1199.

[23] J. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method for
deep neural network compression,” in IEEE International Conference
on Computer Vision, ICCV 2017. IEEE Computer Society, 2017, pp.
5068–5076.

[24] M. Dilhara, D. Dig, and A. Ketkar, “PYEVOLVE: automating frequent
code changes in python ML systems,” in ICSE. IEEE, 2023, pp. 995–
1007.

[25] J. Jiang, J. Yang, Y. Zhang, Z. Wang, H. You, and J. Chen, “A post-
training framework for improving the performance of deep learning
models via model transformation,” ACM Trans. Softw. Eng. Methodol.,
vol. 33, no. 3, pp. 61:1–61:41, 2024.

[26] H. Zhang and W. K. Chan, “Apricot: A weight-adaptation approach to
fixing deep learning models,” in ASE. IEEE, 2019, pp. 376–387.

[27] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning testing:
Survey, landscapes and horizons,” IEEE Trans. Software Eng., vol. 48,
no. 2, pp. 1–36, 2022.

[28] N. Humbatova, G. Jahangirova, G. Bavota, V. Riccio, A. Stocco, and
P. Tonella, “Taxonomy of real faults in deep learning systems,” in ICSE.
ACM, 2020, pp. 1110–1121.

[29] M. Wardat, W. Le, and H. Rajan, “Deeplocalize: Fault localization for
deep neural networks,” in ICSE. IEEE, 2021, pp. 251–262.

[30] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox
testing of deep learning systems,” in SOSP. ACM, 2017, pp. 1–18.

[31] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, J. Zhao, and Y. Wang, “Deepgauge: multi-granularity
testing criteria for deep learning systems,” in ASE. ACM, 2018, pp.
120–131.

[32] M. Yan, J. Chen, X. Zhang, L. Tan, G. Wang, and Z. Wang, “Exposing
numerical bugs in deep learning via gradient back-propagation,” in
ESEC/SIGSOFT FSE. ACM, 2021, pp. 627–638.

[33] X. Zhang, N. Sun, C. Fang, J. Liu, J. Liu, D. Chai, J. Wang, and Z. Chen,
“Predoo: precision testing of deep learning operators,” in ISSTA. ACM,
2021, pp. 400–412.

[34] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore,
“Deepconcolic: testing and debugging deep neural networks,” in ICSE
(Companion Volume). IEEE / ACM, 2019, pp. 111–114.

[35] J. Wang, J. Chen, Y. Sun, X. Ma, D. Wang, J. Sun, and P. Cheng, “Robot:
Robustness-oriented testing for deep learning systems,” in ICSE. IEEE,
2021, pp. 300–311.

[36] N. Humbatova, G. Jahangirova, and P. Tonella, “Deepcrime: mutation
testing of deep learning systems based on real faults,” in ISSTA ’21:
30th ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2021. ACM, 2021, pp. 67–78.

[37] L. Ma, F. Juefei-Xu, M. Xue, B. Li, L. Li, Y. Liu, and J. Zhao,
“Deepct: Tomographic combinatorial testing for deep learning systems,”
in SANER. IEEE, 2019, pp. 614–618.

[38] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: automated testing of
deep-neural-network-driven autonomous cars,” in ICSE. ACM, 2018,
pp. 303–314.

[39] V. Riccio, G. Jahangirova, A. Stocco, N. Humbatova, M. Weiss, and
P. Tonella, “Testing machine learning based systems: a systematic
mapping,” Empir. Softw. Eng., vol. 25, no. 6, pp. 5193–5254, 2020.

[40] F. Tambon, G. Laberge, L. An, A. Nikanjam, P. S. N. Mindom,
Y. Pequignot, F. Khomh, G. Antoniol, E. Merlo, and F. Laviolette, “How
to certify machine learning based safety-critical systems? A systematic
literature review,” Autom. Softw. Eng., vol. 29, no. 2, p. 38, 2022.

[41] D. Marijan, A. Gotlieb, and M. K. Ahuja, “Challenges of testing machine
learning based systems,” in AITest. IEEE, 2019, pp. 101–102.

[42] S. E. Hove and B. Anda, “Experiences from conducting semi-structured
interviews in empirical software engineering research,” in IEEE MET-
RICS. IEEE Computer Society, 2005, p. 23.

[43] S. van Breukelen, A. Barcomb, S. Baltes, and A. Serebrenik, “"still
around": Experiences and survival strategies of veteran women software
developers,” in ICSE. IEEE, 2023, pp. 1148–1160.

[44] G. T. Henry, Practical sampling. Sage, 1990, vol. 21.
[45] H. You, “Github homepage,” Accessed: 2024. [Online]. Available:

https://github.com/youhanmo/DLTestInterview
[46] ——, “Zenodo homepage,” Accessed: 2024. [Online]. Available:

https://doi.org/10.5281/zenodo.14197934
[47] O. Elazhary, C. M. Werner, Z. S. Li, D. Lowlind, N. A. Ernst, and

M. D. Storey, “Uncovering the benefits and challenges of continuous
integration practices,” IEEE Trans. Software Eng., vol. 48, no. 7, pp.
2570–2583, 2022.

https://www.theverge.com/2022/2/2/22912677/apple-face-id-mask-update-ios-15-4-beta-hands-on-impressions
https://www.theverge.com/2022/2/2/22912677/apple-face-id-mask-update-ios-15-4-beta-hands-on-impressions
https://www.bbc.com/news/technology-68025677
https://www.bbc.com/news/technology-68025677
https://community.openai.com/t/gpt-4-is-getting-worse-and-worse-every-single-update/
https://community.openai.com/t/gpt-4-is-getting-worse-and-worse-every-single-update/
https://github.com/youhanmo/DLTestInterview
https://doi.org/10.5281/zenodo.14197934


[48] M. Greiler, M. D. Storey, and A. Noda, “An actionable framework
for understanding and improving developer experience,” IEEE Trans.
Software Eng., vol. 49, no. 4, pp. 1411–1425, 2023.

[49] J. Saldaña, “The coding manual for qualitative researchers,” 2021.
[50] /, “Atlas.ti,” Accessed: 2024. [Online]. Available: https://atlasti.com/
[51] D. R. Thomas, “A general inductive approach for qualitative data

analysis,” 2003.
[52] M. Williams and T. Moser, “The art of coding and thematic exploration

in qualitative research,” International management review, vol. 15, no. 1,
pp. 45–55, 2019.

[53] C. B. Seaman, “Qualitative methods in empirical studies of software
engineering,” IEEE Trans. Software Eng., vol. 25, no. 4, pp. 557–572,
1999.

[54] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough?
an experiment with data saturation and variability,” Field methods,
vol. 18, no. 1, pp. 59–82, 2006.

[55] P. S. H. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-augmented generation for knowledge-intensive NLP tasks,”
in NeurIPS, 2020.

[56] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
in ICLR. OpenReview.net, 2022.

[57] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-cam: Visual explanations from deep networks via
gradient-based localization,” in ICCV. IEEE Computer Society, 2017,
pp. 618–626.

[58] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng,
and D. H. P. Chau, “CNN explainer: Learning convolutional neural
networks with interactive visualization,” IEEE Trans. Vis. Comput.
Graph., vol. 27, no. 2, pp. 1396–1406, 2021.

https://atlasti.com/

	Introduction
	Background and Related Work
	Deep Learning Software Development
	Deep Learning Software Evolution
	Deep Learning Software Testing

	Methodology
	Research Questions
	Semi-Structured Interviews
	Interview Participant Recruitment
	Interview Process

	Qualitative Data Analysis
	Data Availability

	Results
	Codebook
	RQ1: Challenges
	RQ2: Solutions
	RQ3: Support

	Discussion
	Findings Comparison with Exiting Work
	Differences Between Testing DL and non-DL Software
	Implications for Researchers
	Key Takeaways for Industry Practitioners

	Threats to validity
	Conclusion
	References

