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Abstract—The Ada programming language, while not deemed
as a mainstream choice for daily software applications, still plays
a vital role in security-critical systems. Understanding how the
source code of Ada projects changes over time can provide
valuable insights into the maintenance and evolution of these
software systems, which can be further leveraged for various
software engineering tasks including refactoring recommendation
and bug fixing. In this study, we employ fine-grained program
dependence graphs to mine code change patterns of Ada-based
systems. By analyzing 50 open-source Ada projects, we identify
the typical modifications developers perform in Ada codebases
and the underlying development activities that led to these
changes. In comparison to Java code change patterns, our results
indicate more diverse and specialized change practices in Ada
software development.

Index Terms—Code Change Patterns, Ada Programming Lan-
guage, Mining Software Repositories

I. INTRODUCTION

As early as over 20 years ago, there was already a claim
that “Ada is perceived as a dying language by most software
engineers” [1]. Many years have passed ever since, and in
fact, the Ada language is not really dead. In 2023, the new
international standard was published for Ada 2022 [2]. A quick
search on GitHub[3] shows that there are 300-600 new Ada
projects every year since 2015, indicating that there is still an
active Ada community, although not large compared to other
programming languages such as Java and Python.

While Ada is not considered as a mainstream programming
language for daily software applications, today, Ada code still
widely exists in embedded real-time systems, many of which
are security-critical, such as defense, civil aviation and rail [4].
For example, the Air Data Inertial Reference Unit of Airbus
A350 XWB and International Space Station Communication
Subsystem both contain Ada code [5]. Given the importance of
these domains, understanding how Ada projects evolves offers
several benefits: First, the information can provide valuable
insights on how to better maintain Ada legacy software;
Second, the relevant knowledge can facilitate the research and
development of automated tools for code modification/migra-
tion. For example, previous studies [6] have leveraged code
change patterns to improve IDE code completion suggestions,
recommend bug fixes, and suggest refactoring operations.

While code change patterns have been widely studied for
other popular programming languages like Java [6], [7], [8]
and Python [9], [10], no insights have been provided for Ada,
which is important for applications requiring high security,
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correctness and safety. This paper aims to fill this gap by
conducting an empirical analysis of code changes in Ada
projects, replicating the study of Nguyen et al. [8]. More
specifically, we employ fine-grained Program Dependence
Graphs (fgPDGs) to capture the relationships within programs
and identify recurring code change patterns in Ada projects.

Our main goal is to understand how developers perform
code changes in Ada projects and how the changes differ from
those in Java projects. We pose the following RQs:

RQ1: What are the common code change patterns in
Ada projects? We identified 1,093 code change patterns
across 50 Ada repositories. These patterns not only vary in
their frequency of occurrence but also in their distribution
across repositories. We also highlighted the most frequent
change patterns within and across repositories.

RQ2: What types of activities do the change patterns
belong to? We manually classified all mined code change pat-
terns into distinct development activities and observed that the
activities associated with these patterns span various software
maintenance types (adaptive (8.78%), perfective (32.30%),
corrective (25.34%) and preventive (33.58%)), with some
patterns being repeated over extended periods.

RQ3: To what extent do individual developers or teams
share the change patterns? We investigated the distribution
of identified change patterns across the Ada developer commu-
nity and found that the discovered change patterns were much
less ubiquitous for Ada projects than those in Java projects.
For example, 85% of Java projects had at least 10% common
patterns, while this is only true for 56% of Ada projects.

RQ4: What is the temporal distribution of the discovered
change patterns? We examined whether developers tend to
repeat their code changes over a long period. The results
confirm this assumption and indicate the promises of creating
a centralized code change pattern repository.

II. RELATED WORK

Numerous studies have attempted to detect code changes
from software repositories. One of the most fundamental steps
of these techniques is code differencing, namely detecting
the differences between two versions of source code. Based
on code differencing, researchers can further understand how
source code changes. The code change detection techniques
can either have pre-defined patterns (one of the most prominent
types is refactoring detection), or identify/extract patterns
through mining the code changes across software repositories.
This section presents a brief overview of these techniques.



A. Code Differencing

Canfora et al. [11] proposed LDIFF, an enhanced line
differencing tool. LDIFF is based on the information produced
by Unix diff. More specifically, LDIFF addresses the limitation
of Unix diff being unable to distinguish modified lines from
added and removed lines, and also provides the possibility of
tracking line moving.

Fluri et al. [12] presented CHANGEDISTILLER, which ex-
tracts code changes based on abstract syntax trees (ASTs).
CHANGEDISTILLER first matches the nodes of two ASTs and
then calculates an edit script of basic tree edit operations which
transform one AST to the other. The ASTs used are simplified,
with code statements being used as leaf nodes.

JSYNC, a tool designed for code clone management and
proposed by Nguyen et al. [13], also provides the functionality
of tracking code changes. Likewise, JSYNC is also based on
AST, in which each node represents class, method, statement,
or expression. JSYNC adopts tree edit operations such as
addition, deletion, modification, and update of tree nodes.

Falleri et al. [14] developed GUMTREE, aiming to capture
more fine-grained code changes. For example, a return state-
ment will be converted to a subtree with the node “Return-
Statement” as the parent and the returned value as the child.
GUMTREE addressed two major challenges of previous work
on AST-based edit script computation, namely the difficulty
of handling move actions and the scalability issue of handling
fine-grained ASTs with thousands of nodes. At the time of
our study, GUMTREE supports 16 programming languages,
and Ada is not one of them.

Other code differencing algorithms have used more complex
representations of source code. For example, Raghavan et al.
[15] developed DEX, in which each version of source code
is represented by abstract semantic graphs (ASGs). An ASG
is an AST with extra edges indicating type information. Xing
and Stroulia [16] presented UMLDIFF, which automatically
detecting structural changes based on the class models of a
Java project reverse engineered from source code. The tool
JDIFF, developed by Apiwattanapong et al. [17], specifically
looks into the matching methods in an object-oriented lan-
guage. The representations for two Java methods are compared
to extract code differences.

B. Refactoring Detection

Refactoring, the action of improving internal code structure
of a software system without changing its external behaviors
[18], is one of the most popular code change types researchers
have showed enormous interest in.

As early as 2006, Xing and Stroulia [19] developed JDE-
VAN (Java Design Evolution Analysis), which can detect
refactoring operations by applying a set of predefined queries
on the code changes produced by UMLDIFF [16].

REFDIFF by Silva et al. [20] is a multi-language refactoring
detection tool supporting 13 common refactoring types for
Java, C, and JavaScript projects. REFDIFF converts different
versions source code to high level models representing code
elements and TF-IDF is used to calculate code similarity.

REFACTORINGMINER developed by Tsantalis et al. [21]
is by far the most comprehensive and reliable refactoring
detection tool for Java projects. REFACTORINGMINER cur-
rently supports around 100 refactoring types. Instead of using
similarity thresholds, the tool detects refactoring operations
using pre-defined heuristic rules. Based on the core algorithm
of REFACTORINGMINER, Atwi et al. [22] developed PYREF
to detect refactoring operations in Python projects. PYREF
mainly focuses on method-level refactoring operations and
currently supports nine different types of refactoring.

C. Code Change Pattern Mining

Several studies have focused on detecting repetitive code
change patterns from software revision history. Negara et al.
[23] is among the first to identify unknown frequent code
change patterns from a fine-grained sequence of code changes
produced by AST-based code differencing. Their approach can
identify the set of instances of the same kind of code changes.

Janke and Mäder [24] presented a novel method for auto-
matically extracting code change patterns from Git reposito-
ries. Their approach transforms AST-based edit scripts into a
graph dataset and applies graph mining techniques to extract
frequent subgraphs. They found that those mined change
patterns are largely persistent across projects.

Nguyen et al. [8] presented a graph-based mining tool
CPATMINER to mine fine-grained semantic code change pat-
terns from a large number of Java repositories. Their approach
aims to address the issue of previous studies that semantic
closeness of the changes is not always well captured. Es-
pecially, they observed that syntactically unchanged program
statements could also carry important semantic change ele-
ments and the atomic changes might not be on the contiguous
lines of source code. They proposed a representation of
code named fine-grained program dependence graph (fgPDG)
which represents the data/control dependencies among fine-
grained program elements at the expression granularity. Based
on fgPDG, CPATMINER is able to extract meaningful semantic
code change patterns, as confirmed by developers.

Golubev et al. [10] presented PYTHONCHANGEMINER,
which implements the core algorithm of CPatMiner to dis-
cover semantic change patterns in Python. They used Python-
ChangeMiner to analyze 120 projects from four different soft-
ware engineering domains and the patterns were manually cat-
egorized based on their structure and content. While PYTHON-
CHANGEMINER is based on CPATMINER, there are some
critical differences in their implementation. First, PYTHON-
CHANGEMINER utilizes GumTree [14], while CPATMINER
employs JSync’s algorithm [13] to identify the corresponding
and changed nodes to construct change graphs from fgPDGs.

Based on CPATMINER, Dilhara et al. [9] developed R-
CPATMINER to detect repetitive code changes in Python
machine learning systems. R-CPATMINER also integrates
RefactoringMiner to make the process refactoring-aware.

While relevant, these studies mainly focus on more popular
programming languages, with little attention paid to Ada.



III. ADA-CPATMINER

In this section, we present ADA-CPATMINER, the tool for
mining code change patterns from Ada projects. The main
algorithm of ADA-CPATMINER tightly follows CPATMINER
[8], which is also the foundation for PYTHONCHANGEMINER
[10]. In this section, we detail how ADA-CPATMINER works
and explain the necessary deviations from the original CPAT-
MINER approach.

A. Overview
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Fig. 1: Overview of ADA-CPATMINER

ADA-CPATMINER follows the following steps to extract
code change patterns from Ada projects. Given a set of
Ada software repositories, ADA-CPATMINER first iterates the
commits of each repository to identify changed Ada files.
The original files and the changed files are then parsed into
ASTs and method pairs with identical names are extracted.
For these method pairs, ADA-CPATMINER generates fine-
grained Program Dependence Graphs (fgPDGs). The fgPDGs
of method pairs are further compared to extract the change
graphs. Finally, ADA-CPATMINER mines code changes pat-
terns in all of the obtained change graphs.

B. File Change Identification

For each Ada repository in our dataset, we first iterate the
commits and identify the changed Ada files. To do so, we
use the PYDRILLER framework [25]. We only focus on the
modified files with the “.adb” extension, which is typically
used for the Ada implementation files (or Ada body). These
adb files are akin to the cpp files of the C++ programming
language.

C. AST Parsing

The ADA-CPATMINER parses ASTs using Libadalang 1.
Libadalang is a library for parsing and conducting semantic
analysis of Ada code, which allows ADA-CPATMINER to per-
form semantic queries on ASTs, such as reference resolution
(what a reference corresponds to) and type resolution (which
type an expression belongs to). These queries can be helpful
in this case, because it can be hard to determine whether an
expression is a variable reference or a function call based on
the AST alone.

1Libadalang: https://github.com/AdaCore/libadalang/

D. Fine-Grained Program Dependence Graphs Building

Program Dependence Graphs (PDGs) are a representation
of a program that captures both data and control dependen-
cies [26]. These dependencies are crucial for various software
engineering tasks, including program slicing, optimization,
and, as in our context, code change pattern mining. Traditional
PDGs can be coarse, and often represent dependencies at the
level of statements or blocks. On the other hand, another
widely used program representation Abstract Syntax Tree
(AST) only focuses on the syntactic structure of the program,
which, while valuable, can sometimes overlook the semantic
nuances of code changes. To bridge the gap between the high-
level view of PDGs and the syntactic granularity of AST,
Nguyen et al. [8] proposed fine-grained Program Dependence
Graphs (fgPDGs), which not only captures data and control
dependencies, but deals with source code at a more fine-
grained level of expressions [8].

1) Node Types in fgPDGs: The architecture of fgPDGs is
structured based on three primary node types:

1) Data nodes encapsulate program elements like variables,
literals, and constants, highlighting the data components
of a program.

2) Operation nodes symbolize the active elements of a
program, these nodes represent operations ranging from
arithmetic to function calls.

3) Control nodes illustrate the program’s control flow,
representing sequences such as ‘if’, ‘while’, and ‘for’.

2) Edge Types in fgPDGs: In fgPDGs, the relationships
between nodes are articulated through edges, which can be
categorized into two types:

1) Control edges serve as the bridge between control nodes
and their controlled counterparts, i.e., these edges define
the control flow.

2) Data edges illustrate the program’s data flow.

E. Change Graph Extraction

A change graph connects the fgPDGs of the code frag-
ments before and after changes. The connection is established
through so-called map edges, which link nodes from the
fgPDG of the pre-change version to those in the fgPDG of the
post-change version if they represent corresponding unchanged
elements. Nodes deleted in the older version or introduced in
the new version are also annotated, providing a clear view of
the changed elements.

To derive the fine-grained changes within each modified
method, an initial step involves computing tree-based differ-
ences using an AST differencing algorithm. This algorithm
maps nodes between two ASTs, based on node types and
structural similarities between subtrees rooted at those nodes.
Nodes that remain unmapped are deemed deleted from the old
tree or added to the new tree. Leveraging this information,
corresponding nodes in the two fgPDGs–before and after the
changes–are linked.

https://github.com/AdaCore/libadalang/


1) AST Differencing Algorithm: We initially re-
implemented JSYNC for Ada, which was the AST differencing
algorithm used in CPATMINER [8]. However, during our
experimentation, we found the performance was not optimal.
For example, “move” operations were often misclassified
as “delete and add” operations because it was unable to
find the correct mappings. Therefore, we decided to opt for
GUMTREE [14]. GumTree was also used in the work of
Golubev et al. [10] to mine Python code change patterns.
In their case, they were able to use GUMTREE directly due
to its Python support. Such support does not exist for Ada,
therefore, we ported GUMTREE for the Ada language.

2) An Example of Change Graph Extraction: To have a
better understanding on how change graph extraction works,
we present a code change from the SDLAda repository2

(Listing 1) and its corresponding change graph (Figure 2).
In the example, the if statement is inverted and an early return
is added to the “not” condition. In the change graph, the left
dotted rectangle contains the fgPDG of the code snippet before
change, while the right one contains the fgPDG after code
change. All the unchanged nodes are connected through a
‘map’ edge.

if Initialized (W) then
W.Resource := Invalid_Resource;

end if;
(a) Before changes.

if not Initialized (W) then
return;

end if;
W.Resource := Invalid_Resource;

(b) After changes.

Listing 1: A code change from SDLAda repository: the
inverted if statement and early return.
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Fig. 2: fgPDG Change Graph

2https://github.com/Lucretia/sdlada

F. Change Pattern Mining

Change patterns provide a systematic way to comprehend
recurring code alterations. These patterns are not just repetitive
syntactic modifications but are semantic in nature, indicating
a deeper behavioral or structural change in the software.

1) Semantic Change Patterns: A change is identified as
a semantic change pattern if its corresponding fgPDG is a
connected graph and is repeated (found isomorphic) at least
σ times in the change graph dataset, with σ being user-
configurable [8]. The notion of isomorphism implies that the
graphs have a one-to-one correspondence between their nodes
and edges, preserving the relational structure.

2) Change Pattern Mining Algorithm: While a more thor-
ough description of the change pattern mining algorithm is
available in the original paper of CPATMINER [8], here we
briefly introduce the main idea of this algorithm. The algo-
rithm commences by identifying nodes that appear frequently
as foundational building blocks, and subsequently, these nodes
are recursively extended to craft more expansive patterns. The
algorithm adheres to the following strategy:

1) Pattern Initialization: Starting with frequently occurring
nodes, a set of size-of-1 patterns is constructed.

2) Pattern Expansion: Each size-of-1 pattern is incremen-
tally expanded to establish larger patterns. To do so, the
algorithm
• identifies adjacent nodes for extension, placing signifi-

cance on their type and their relationship with existing
sub-graph,

• differentiates node types, ensuring certain criteria are
met for expansion. For instance, method-call nodes are
always eligible for expansion, while other operation
nodes require both incoming and outgoing connections
to the sub-graph, and

• adds nodes and their corresponding map edges (if
existent) to the sub-graph to encapsulate the change
data.

3) Isomorphic Clustering: With potential expansions in
place, these patterns are clustered based on isomorphism,
grouping structurally identical graphs. To enhance effi-
ciency, a heuristic (Exas) combining graph vectorization
and hashing is employed [27].

4) Pattern Selection: Among the clusters, those not meeting
the minimum frequency σ or already discovered are
discarded. From the remaining clusters, the most frequent
one is chosen, and its extensions are sought recursively.
This greedy approach obviates exhaustive search com-
plexities, ensuring scalability.

G. Validation

We manually evaluated a collection of patterns to validate
the performance of ADA-CPATMINER. In this validation, we
followed the approach adopted by Golubev et al. [10], in which
we consider a pattern correct if it actually represents a repeated
change and incorrect if it does not.

https://github.com/Lucretia/sdlada


To obtain these patterns, we used the GraphQL API [28]
to collect projects from GitHub which fulfill the following
conditions: 1) the main language is Ada, 2) the project has
between 500 and 1,000 commits, and 3) the project is not a
fork of another project. We selected the top 10 repositories
based on the stargazer count.

TABLE I: The summary of projects used to validate the Ada
Change Pattern Miner. The dataset was collected in June 2023.

Project Stars Commits Contributors

AdaDoom3/AdaDoom3 246 831 7
jrmarino/synth 243 734 12
tofgarion/spark-by-example 146 778 5
Lucretia/sdlada 99 520 11
zertovitch/hac 86 833 1
wookey-project/ewok-kernel 71 520 5
Blunk-electronic/M-1 31 647 2
jrmarino/AdaBase 30 586 2
Componolit/libsparkcrypto 27 801 3
Componolit/gneiss 22 643 3
yet-another-static-site-generator/yass 22 781 5

Since ADA-CPATMINER identifies changes of any size,
we needed to filter out changes too small to be meaningful
patterns. We decided to use the same thresholds as Nguyen
et al. [8] for CPATMINER. That is, the minimum number
of nodes in a change graph is three, and the minimum
frequency of repeated graphs to form a pattern is also three
(following the “Rule of Three” [18]). In total, 1,836 change
graphs were extracted and processed, resulting in 66 patterns
containing 228 samples. We manually reviewed all patterns for
verification. We determined that 58 (87.9%) of the inspected
patterns were straightforward and actually represented change
patterns. Eight (12.1%) patterns were deemed incorrect. In
one pattern, the GumTree algorithm incorrectly mapped two
methods with similar names, which led to an incorrect pattern.
In another pattern, the changes had similar AST structures but
were unrelated. For the remaining six patterns, the same object
had moved and had nothing in common except for this object.
Given these results, we believe our tool is overall reliable.

IV. STUDY DESIGN

A. Research Questions

Our primary objective is to understand how developers per-
form code changes within Ada programs and identify recurrent
change patterns that can shed light on everyday programming
tasks and highlight potential opportunities for automation. To
reach this goal, we replicate the study of CPATMINER [8]
and formulate the following research questions. The same
nature of questions asked not only helps us to look into Ada
projects from a structured perspective, but also makes results
comparison possible.

RQ1: What are the common code change patterns in
Ada projects? This question seeks to uncover the prevalent
change patterns in Ada programs by leveraging the capabilities
of fine-grained program dependence graphs. Identifying these
patterns helps us to understand the typical modifications

developers perform in Ada codebases and offers insights into
the common challenges or requirements Ada developers face,
potentially leading to the development of tools or practices
that can assist in these recurrent scenarios.

RQ2: What types of activities do the change patterns
belong to? This question aims to categorize the patterns based
on the development activities prompting these changes. By
examining activities associated with these patterns, we can
also understand whether the change patterns are diverse or if
they tend to cluster around specific types of activities.

RQ3: To what extent do individual developers or teams
share the change patterns? This question seeks to gauge
the generality and ubiquity of the identified change patterns
across the Ada programming community. By determining how
widespread these patterns are among various developers, we
can understand whether these patterns are unique to specific
developers or teams or if they are common practices shared
across the community. The broader the adoption of these
patterns, the more indicative it is of their utility for a wide
population of developers.

RQ4: What is the temporal distribution of the discovered
change patterns? This research question aims to understand
whether most instances of change patterns only occur in a short
time or recur over long durations. The latter can underscore
the value of creating a repository of such patterns, which
would enable developers to tap into prior knowledge about
code modifications and serve as a base for change automation.

B. Data Collection

The foundation of this research is built upon a robust dataset
that accurately represents the Ada development community’s
practices concerning change patterns. In this study, two distinct
corpora were utilized: a “validation corpus” for examining the
reliability of ADA-CPATMINER (Section III-G) and a “depth
corpus” specifically tailored to answer our research questions.
In this subsection, we will introduce how we collected these
repositories for the “depth corpus”.

1) Repository Selection: We collected open-source soft-
ware (OSS) repositories from GitHub, given its dominance in
OSS development. We aimed to focus on high-quality, team-
driven Ada projects that reflect collaborative development
practices and, by extension, a broader range of change patterns.
Therefore, we applied the following criteria to filter projects:

• Projects should have at least 1,000 commits, ensuring a
rich history of development and changes.

• The projects should not be forks of other repositories.
This criterion is essential to avoid the potential duplicates
in change graphs.

• We select the top 50 Ada repositories based on the
stargazer count, to ensure these projects are popular and
have sufficient community engagement.

Given our project selection criteria, we first used the
GraphQL API of GitHub to identify all repositories where Ada
was the primary programming language. This initial sweep
yielded a total of 5,932 Ada projects. By removing repositories
with less than 1,000 commits, only 82 repositories were left.



Given the possibility of misclassifications inherent in au-
tomated data collection, we manually inspected these 82
repositories and removed repositories that 1) were incorrectly
classified as Ada repositories, 2) were forks of other projects,
or had inflated commit counts due to automated commits. Then
we picked the top 50 projects based on their stargazer count
from the remaining repositories. The list of adopted projects
in this study can be found in our replication package.

Figure 3 illustrates in which year these repositories were
created. The creation dates of these repositories span from
2010 to 2021. Notably, a majority of these projects (41 out
of 50) were updated in the current year, indicating that these
repositories are still actively being maintained. Only a handful
of repositories had their last update in previous years, with 7
in 2022, 1 in 2019, and 1 in 2018. It is also worthwhile to
mention that AdaCore maintains a significant portion of the
repositories (20 out of 50). AdaCore is the leading provider
of commercial software solutions for Ada.
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Fig. 3: Repository creation year counts.

2) Code Change Pattern Extraction: Cumulatively, the se-
lected 50 projects encompass 52K Ada source files, amounting
to 6.8M SLOC in their latest snapshot. Given the diverse range
of projects and their varying commit counts, it was essential
to normalize the data for a balanced analysis. Therefore,
we extracted the most recent 2,000 commits involving Ada
code changes from each selected project. We applied ADA-
CPATMINER on these commits.

Change Pattern Size Constraints. Given the capability of
ADA-CPATMINER to detect changes of any magnitude, we
need to introduce constraints to filter out minuscule changes
that might not represent meaningful patterns. To this end, we
adopted the thresholds proposed by Nguyen et al. [8] in their
work on CPATMINER:

• Minimum Node Count: The smallest permissible change
graph was set to comprise at least 3 nodes. This threshold
ensures that the identified changes are sufficient to be
considered patterns.

• Maximum Node Count: To ensure computational effi-
ciency and curtail the change pattern mining algorithm’s
running time, we discard those change graphs which has
more than 100 nodes.

Pattern Frequency Threshold. We set the minimum fre-
quency threshold of repeated graphs σ to be 3. This decision
follows et al. [8]. It aligns with the well-established “Rule of
Three”, which posits that a pattern or behavior observed three
times can be considered a consistent trend [18].

In total, we collected 86K change graphs. However, only
81K were deemed suitable for change pattern mining given the
change pattern size constraints. The statistical information of
these projects can be found in Table II, which also includes the
information of the validation corpus for comparison purposes.

TABLE II: Collected Repositories. The dataset was collected
in August 2023

Val.-Corpus Depth-Corpus

# projects 10 50

# total source files 1.5K 52K
# total SLOCs at last snapshot 186K 6.8M

# developers with analyzed commits 31 196
# analyzed commits 1.8K 20K

# total changed methods (graphs) 5.8K 81K
# total AST nodes of changed methods 1.7M 33M
# Total changed graph nodes 90K 1.4M

3) Change Activity Identification: We followed Nguyen et
al. [8] and manually classified mined change patterns into four
types of development activities based on ISO/IEC 14764:2006
[29]: adaptive, perfective, corrective, and preventive.

• Adaptive changes refer to those which modify software
to keep them usable in a changed/changing environment.

• Perfective changes refer to those which provide enhance-
ments for users such as performance optimization.

• Corrective changes refer to those which correct discov-
ered problems such as bugs.

• Preventive changes refer to those which improve software
products before they become faults, such as refactoring.

4) Pattern Share Identification: To understand whether
the discovered code change patterns represent widespread
practices or are unique to specific developers or teams, we
calculate the percentage of patterns shared with others for
unique developers and projects.

5) Pattern Temporal Distribution Extraction: We first iso-
lated patterns of individual developers and created a timeline
for each pattern based on commit timestamps from GitHub. We
then calculated the time intervals between successive commits.
To maintain our focus on the temporal distribution, instances
from the same commit were excluded.

6) Running Time: The depth-corpus experiment was con-
ducted on a Windows 10 Server, equipped with 8th Gen
Intel(R) Core(TM) i7-8700K Hexa-Core 3.7 GHz CPU and
64GB of RAM. Change graph extractions were run with
12 threads, while change pattern mining was run on only
one thread. In total, the execution of CPATMINER on the
depth-corpus took 29 hours and 45 minutes. However, it
is noteworthy that 5 out of 50 analyzed repositories were
responsible for over 71% of the total running time.



V. RESULTS

This section answers the four research questions regarding
common code change patterns, activities associated with these
patterns, pattern ubiquity among developers and teams, and
the temporal distribution of patterns.

A. RQ1: What are the common code change patterns in Ada
projects?

In this research question, we aim to shed light on typical
modifications developers frequently perform in Ada projects.
While all the extracted patterns can be found in our replication
package, here we will present the most frequent patterns
based on occurrence count and the most frequent patterns
among repositories. We also present the temporal distribution
of patterns.

1) Most Frequent Patterns Based on Occurrences: When
only looking into the number of occurrences of code change
patterns, we found that the most frequent patterns are typically
refactoring operations applied to a wide range of methods.
Interestingly, these patterns are also often confined to a single
repository and are predominantly applied in a single commit.
Here we illustrate the top-3 frequent patterns extracted with
ADA-CPATMINER.

The most frequent pattern originated from the RecordFlux
repository3, which was identified 155 times. An example
can be found in Listing 2. This pattern pinpoints a specific
commit where the “Extract Subprogram” refactoring technique
was employed across 155 analogous subprograms. In Ada,
subprogram is akin to functions or methods in C++ and Java.
The subprograms which return a value are referred to as
“functions”, while those which do not return any value are
called “procedures”.

procedure Set_Value (Ctx : in out Context;
Val : RFLX.Universal.Value) is

Value : constant RFLX_Types.U64 := To_U64 (Val);
Buffer_First, Buffer_Last : RFLX_Types.Index;
Offset : RFLX_Types.Offset;

begin
Set (Ctx, F_Value, Value, 8, True,

Buffer_First, Buffer_Last, Offset);
RFLX_Types.Insert (Value, Ctx.Buffer, Buffer_First,

Buffer_Last, Offset, 8,
RFLX_Types.High_Order_First);

end Set_Value;

(a) Before changes.
procedure Set_Value (Ctx : in out Context;

Val : RFLX.Universal.Value) is
begin

Set_Scalar (Ctx, F_Value, To_U64 (Val));
end Set_Value;

(b) After changes.

Listing 2: An example of the most frequent change pattern. A
new procedure Set_Scala was extracted from the original
procedure.

The second most frequent pattern, also from the Record-
Flux repository, occurred 55 times. This pattern highlights a

3https://github.com/AdaCore/RecordFlux

commit where a function was removed as part of if conditions
involving a Context variable. An example can be found in
Listing 3.

procedure Verify (Ctx : in out Context; Fld : Field)
is
begin

if
Has_Buffer (Ctx)
and then Invalid (Ctx.Cursors (Fld))
and then Valid_Predecessor (Ctx, Fld)
and then Path_Condition (Ctx, Fld)

then

(a) Before changes.
procedure Verify (Ctx : in out Context; Fld : Field)
is
begin

if
Invalid (Ctx.Cursors (Fld))
and then Valid_Predecessor (Ctx, Fld)
and then Path_Condition (Ctx, Fld)

then

(b) After changes.

Listing 3: An example of the second most frequent change pat-
tern. The “Has_Buffer” function with the Context variable
ctx was removed.

The third pattern was found in the ocarina repository4. This
change shows another instance of the “Extract Subprogram”
refactoring, applied to 35 subprograms. Listing 4 shows an
example.

procedure Visit_Process_Instance (E : Node_Id) is
begin

if not AINU.Is_Empty (Subcomponents (E)) then
S := First_Node (Subcomponents (E));
while Present (S) loop

Visit (Corresponding_Instance (S));
S := Next_Node (S);

end loop;
end if;

(a) Before changes.
procedure Visit_Process_Instance (E : Node_Id) is
begin

Visit_Subcomponents_Of (E);

(b) After changes.

Listing 4: An example of the third most frequent change pat-
tern. A new procedure Visit_Process_Instance was
extracted from the original procedure.

2) Patterns Most Frequent Among Repositories: Given that
most patterns reside in a single repository, we also specifically
looked into the patterns which recur across multiple reposito-
ries. Here we also list the top-3 patterns.

The leading pattern was identified across four repositories
with 12 occurrences. In this pattern, an extra condition is
added to an existing if condition. An example can be found
in Listing 5.

4https://github.com/OpenAADL/ocarina

https://github.com/AdaCore/RecordFlux
https://github.com/OpenAADL/ocarina


The second most frequent pattern across projects was ob-
served in 4 different repositories, occurring five times. This
pattern underscores a common practice when converting an
unbounded string to a bounded one: adding an if statement.
Listing 6 illustrates an example.

The third most frequent pattern, identified in 3 different
repositories and occurring four times, indicates that when
invoking the Close procedure, an if statement is frequently
added, as illustrated in Listing 7.

if Kind (F) = K_Port_Spec_Instance then

(a) Before changes.
if Kind (F) = K_Port_Spec_Instance and then

Is_Data (F) then

(b) After changes.

Listing 5: An example of the most frequent change pattern
across repositories. The “Kind” function is part and a new if
condition is added.

Ada.Text_IO.Put_Line
(File, "# "

& Ada.Strings.Unbounded.To_String (Document.Title));
Ada.Text_IO.New_Line (File);

(a) Before changes.
if Document.Print_Footer then
Ada.Text_IO.Put_Line

(File, "# "
& Ada.Strings.Unbounded.To_String (Document.Title));

Ada.Text_IO.New_Line (File);
end if;

(b) After changes.

Listing 6: An example of the second most frequent change
pattern across repositories. An ‘if’ statement was added when
converting an Unbounded String to a String type.

overriding procedure Finalize (Object : in out Library) is
begin

Close (Object.Handle, Raise_On_Error => False);
end Finalize;

(a) Before changes.
overriding procedure Finalize (Object : in out Library) is
begin

if Object.Handle /= null then
Close (Object.Handle, Raise_On_Error => False);

end if;
end Finalize;

(b) After changes.

Listing 7: An example of the third most frequent change
pattern across repositories. An ‘if’ statement was added when
calling the Close procedure.

Lesson 1: Most patterns reside in a single repository
or a single commit, and the patterns across projects
have much fewer occurrences. This fact reminds the
researchers to be especially careful when applying
learned changed patterns to other projects, as they
might not be applicable in other projects.

B. RQ2: What types of activities do the change patterns
belong to?
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Fig. 4: The distribution of patterns by their Software Mainte-
nance Type.

We manually classified all mined change patterns into
distinct development activities: adaptive (8.78%), perfective
(32.30%), corrective (25.34%) and preventive (33.58%). No-
tably, within the preventive changes, 12% were identified as
refactoring.

For comparison, in the original study of Java change pattern
mining, Nguyen et al. [8] found that 9% were adaptive,
20% were perfective, 35% were corrective, and 36% were
preventive. Intriguingly, a significant 35% of their preventive
changes were identified as refactoring.

These findings highlight profound differences in develop-
ment activities between Ada and Java projects, especially
within the perfective and corrective software maintenance
categories. Additionally, the disparity in refactoring within
preventive changes between the two languages is evident.
We posit that these variations stem from Ada’s foundational
design philosophy centered on safety and reliability. Ada was
designed with an emphasis on software engineering principles,
including strong type-checking, array bound checking, initial-
ization of variables, all geared towards early error detection
during development rather than post-deployment.

Lesson 2: Corrective activities account for much
smaller portion of code changes in Ada projects com-
pared to Java. Such activity classification might be
applied elsewhere to help developers understand the
stability and reliability of their projects.



C. RQ3: To what extent do individual developers or teams
share the change patterns?

By examining the extent to which the discovered patterns
are shared or diverge among developers, we aim to uncover
whether they represent widespread practices or are unique to
specific developers or teams. A shared collection of patterns
across the community can signify universally faced challenges
or universally adopted best practices, while unique patterns
might indicate team-specific challenges or solutions.
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Fig. 5: Accumulated % of shared patterns over developers and
projects.

1) Pattern Ubiquity Among Developers: The ubiquity of
change patterns among developers offers a lens into the col-
lective practices and challenges faced within the Ada developer
community. As illustrated in Figure 5, a significant portion of
developers, 23%, share all their change patterns with other
developers; this suggests a commonality in challenges or so-
lutions they encounter or adopt. However, the shared patterns
decrease as we move toward a broader spectrum. Only 36% of
developers have at least half of their patterns shared by their
peers. Furthermore, a majority, 74%, have a minimal overlap,
with just 10% of their patterns being common. This data
indicates a blend of shared practices and unique challenges
or solutions individual developers might face.

2) Pattern Ubiquity Among Projects: Diving deeper into
the projects, we explore the extent to which change patterns
are shared across different Ada projects. Figure 5 visually rep-
resents the accumulated percentage of shared change patterns
among these projects. A striking observation is that only a
single project, representing 2% of the total, has a vast majority
(97%) of its patterns shared with other projects. However, only
23% of projects have at least half their patterns in common
with others. A more significant percentage, 56%, have a
modest overlap, sharing at least 10% of their patterns with
other projects. This data underscores the diversity of practices,
challenges, and solutions across different Ada projects, with
some patterns being universally adopted while others remain
project-specific.

3) Comparison with Java Code Change Patterns: The
exploration of pattern ubiquity in Ada projects presents a

contrasting landscape when compared with the findings of
Nguyen et al. [8] for Java projects.

From the perspective of developers, 43% of individuals
shared all their change patterns with others, while only 23%
of Ada developers exhibited the same level of pattern sharing.
Furthermore, 75% of Java developers had at least half of
their patterns mirrored by their peers, compared to 36% of
Ada developers. A broader view reveals that 88% of Java
developers shared at least 10% common patterns, whereas this
figure stands at 74% for Ada developers.

From the perspective of projects, the disparity is even more
pronounced. A significant 31% of Java projects had all their
patterns in common with other projects, while this was true
for only 2% of Ada projects. Moreover, 55% of Java projects
shared at least half of their patterns with others, in contrast to
23% of Ada projects. Furthermore, when considering projects
with at least 10% common patterns, Java stands at 85%
compared to Ada’s 56%.

One plausible explanation for these differences could be
Ada’s relatively fewer available open-source libraries. With
fewer libraries to rely on, Ada developers might often resort
to crafting custom solutions, leading to a more diverse set
of change patterns. Additionally, the emphasis on backward
compatibility in common Ada libraries could mean that once
a solution is implemented, there would be less need for drastic
changes, leading to fewer shared patterns over time. Java, with
its vast ecosystem of open-source libraries, might encourage
developers to converge on common solutions and patterns,
leading to a higher degree of shared practices.

These findings emphasize the importance of understanding
the nuances of each programming community and the factors
that influence their shared and unique development practices. It
also underscores the role that available resources, like libraries,
play in shaping the development landscape of a language.

Lesson 3: While many Ada projects share code change
patterns, overall these patterns are much more unique
compared to those in Java projects. This fact might to
a certain extent limit the ability of mining-based code
change automation techniques for Ada projects, while
still possible.

D. RQ4: What is the temporal distribution of the discovered
change patterns?

We plot the durations of two consecutive instances of same
change patterns applied by same developers in Figure 6. The
figure reveals that a majority (54%) of the pattern instances
recur after at least a month, with a significant 28% resurfacing
after more than a year. This distribution suggests that change
patterns in Ada development persist over time, namely a
developer would repeat similar code changes for a while. This
result also reinforces the idea that developers might benefit
from a centralized repository of change patterns, such that
you could easily reuse.
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Fig. 6: Histogram of Change Patterns over Time

Compared to the temporal distribution of Java code change
patterns [8], similar trend was found (Slightly less than half
of the Java change pattern instances are repeated by the same
developer after at least one month). While a higher percent of
Ada change patterns recur over one year, the differences are
not that huge.

Lesson 4: Developers do repeat their code changes
over a long period, and the trend holds for both Ada
and Java projects. A repository of change patterns
might help developers easily reapply code changes.

E. Replication

To facilitate the replication and extension, the source code
of ADA-CPATMINER and the detected code change pat-
terns are available at https://github.com/codechangepattern/
Ada-CPatMiner.git.

VI. THREATS TO VALIDITY

Threats to internal validity concern the extent in which the
evidence supports our claim about cause and effect. While
our repository selection criteria were designed to ensure a
comprehensive and representative dataset, they inherently in-
troduce a potential bias. By focusing on repositories with a
high stargazer count and a minimum number of commits, we
inadvertently excluded newer or smaller projects that could
offer unique insights into Ada development practices.

Threats to construct validity concern the relationship be-
tween theory and observation. The ADA-CPATMINER, though
tailored for Ada, is based on principles derived from tools like
CPATMINER [8] and PYTHONCHANGEMINER [10]. While
these program languages have very different syntax, we believe
this would not lead to significant imprecision of change pat-
tern extraction, which was demonstrated through our manual
validation. However, there might still be specific Ada-centric
nuances or constructs that the tool might not capture optimally.

While necessary for computational efficiency, the con-
straints imposed on the size of change graphs might exclude
certain intricate or more extensive change patterns that could
be of significance.

Threats to external validity concern the generalizability
of our results. While our findings provide valuable insights
into code change patterns in Ada projects, caution should be
exercised when attempting to generalize these findings to other
programming languages or development ecosystems.

Besides, our study is grounded in the analysis of open-
source Ada projects on GitHub. This focus might not capture
the practices and patterns prevalent in proprietary or enterprise
Ada projects, which could differ significantly from open-
source development.

Moreover, our dataset was collected in August 2023, which
offers a snapshot of Ada development practices up to that
point. As the Ada community evolves and adopts new practices
or tools, some of our findings might become less relevant or
require re-evaluation in the future.

Threats to conclusion validity concern the degree to which
the conclusion presented is reliable. One of the potential
threats lies in the quality and relevance of the change patterns
we extracted. While our methodology was rigorous in identify-
ing and categorizing these patterns, the absence of qualitative
assessment means that we cannot definitively comment on the
meaningfulness or utility of these patterns in real-world Ada
development scenarios. In change pattern mining, the quality
of patterns is not solely determined by their frequency or
distribution but also by their relevance and applicability to
developers.

VII. CONCLUSIONS

During this research, we embarked on a comprehensive
exploration of change pattern mining in Ada projects by
replicating the study of Nguyen et al. [8] with necessary
customization for the Ada programming language. We de-
veloped ADA-CPATMINER to analyze a wide selection of
Ada projects. Our analysis pinpoints a series of recurring
change patterns within Ada projects, discloses how universally
these patterns are adopted among individual developers and
across diverse projects, and indicates the promises of building
a centralized change pattern repository for easy change re-
application.

Given the insights and the challenges encountered, several
avenues for future exploration and enhancement emerge:

• Refinement of the ADA-CPATMINER: The current ver-
sion of the ADA-CPATMINER, though effective, has room
for enhancement. Future work could focus on optimizing
its algorithms, expanding upon its Ada AST support, and
refining its accuracy.

• Dataset Expansion: Our research explored open-source
Ada projects. A more comprehensive view might emerge
if future research could incorporate proprietary Ada
projects.

• Qualitative Research on Pattern Usefulness: We would
like to assess the meaningfulness and usefulness of
the mined patterns. Engaging with Ada developers and
stakeholders can provide a deeper understanding of the
real-world applications and applicability of the identified
patterns.

https://github.com/codechangepattern/Ada-CPatMiner.git
https://github.com/codechangepattern/Ada-CPatMiner.git
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