Reviewing Career Paths of the OpenStack
Developers

Perry van Wesel*, Bin LinT, Gregorio Robles*, Alexander Serebrenik*
*Eindhoven University of Technology, The Netherlands, p.m.m.v.wesel @student.tue.nl, a.serebrenik @tue.nl
TUniversita della Svizzera italiana (USI), Switzerland, bin.lin@usi.ch
fUniversidad Rey Juan Carlos, Spain, grex@gsyc.urjc.es

Abstract—Career perspectives are known to motivate software
engineers. However, so far, career perspectives have been mostly
studied within traditional software development companies. In
our work we take a complementary approach and study career
paths of open source developers, focusing on their advancement
through the code review hierarchy, from developers to reviewers
and further to core reviewers.

To gain understanding of code review career paths we conduct
an exploratory case study of the OpenStack community. Based
on the case study we have publicized anonymized research data
and formulated four hypotheses pertaining to career paths of
contributors in modern multi-company open source projects.
We conjecture that (i) developers and reviewers are separate
subpopulations with little movement between them, (ii-a) the
turnover of the core reviewers is high and rapid, (ii-b) companies
are interested in having core reviewers among their staff, and
(iii) being a core reviewer is beneficial for career.

Validity of those hypotheses in other multi-company open
source projects should be investigated in the follow-up studies.

I. INTRODUCTION

Career path-related prospects have been repeatedly reported
as one of the motivators of software engineers: in the sys-
tematic literature review conducted by Beecham et al. [1]
and covering the period from 1980 to 2006, the authors have
identified 15 papers relating career perspectives to software
engineers’ motivation, while a more recent literature review of
Franca et al. [2] has further identified nine additional papers.

While most of these studies refer to developers working on
traditional closed-source software or to the benefits that Open
Source contributors might have in terms of career advancement
in traditional organizations [3], few have considered advance-
ment within Open Source communities [4].

Previous research on different roles found in Open Source
Software projects is known [5], [6]. However, since many
Open Source projects do not have formally defined roles,
“roles” are more commonly interpreted as contributors being
more or less active [7], more or less experienced ones [8], [9],
or choosing to specialize on different kinds of activities, e.g.,
coding, localization [7], bug-reporting/testing [10].

With the professionalization of the Open Source developer
force, many developers have started to pursue a professional
career as an Open Source developer. This is especially the
case in those software ecosystems that are the joint effort
of many industrial partners, such as the ones in OW2,! or

Uhttps://projects.ow2.org/bin/view/wiki/

OpenStack,”. Even if roles and paths have been identified
in Open Source projects previously [5], the current scenario
and career perspectives of developers have changed signifi-
cantly. While ten years ago the only professionalized tasks
corresponded to activities that volunteer developers did not
want to perform and/or require major dedication, i.e., release
managers or maintainers of strategic components, nowadays
many projects count on a professional workforce. In such a
scenario, the career possibilities and paths that an ecosystem
offers may serve as a factor of attraction and retention of
highly specialized developers.

To get insights in the career paths in the Open Source
communities we conduct a case study on the OpenStack
project. Similarly to Kula et al. [11] we operationalize career
stages through the lens of a modern code review [12], [13],
and distinguish between non-reviewers (developers), review-
ers and core reviewers. We observe that merely 3% of the
developers become code reviewers, and 37% of those become
core reviewers. Moreover, becoming a core reviewer does not
take long. However, many core reviewers leave after a short
period. We also observe that for both full-time and non-full-
time contributors, the number of reviews increases once they
become core reviewers. No such uniformity can be observed
with respect to the commits authored by contributors.

Based on the case study, we have formulated four hy-
potheses pertaining to career paths of contributors in mod-
ern industrial Open Source projects. We conjecture that (i)
developers and reviewers are separate subpopulations with
little movement between them, (iii) the turnover of the core
reviewers is high and relatively rapid, (ii) companies are
interested in having core reviewers among their staff, and (iv)
being a core reviewer is beneficial for career. These hypotheses
should be confirmed or refuted by follow-up studies.

We make the anonymized data used in this study public.

II. WHY CODE REVIEWS?

As indicated in Section I, similarly to Kula et al. [11] we
operationalize career stages through the lens of a modern code
review [12], [13]. Indeed, anecdotal evidence suggests that
companies such as GitLab consider reviewing code as one of

Zhttps://www.openstack.org/
3https://openstack-career.github.io/data.zip

the key areas of developer expertise and individuals not having
it are only hired as junior developers®.

To further assess the validity of code reviewing as an indi-
cation of the career phase, we compare the salaries associated
with code reviewing as opposed to software development in
general (cf. the representation condition [14]). To this end, on
July 28, 2017 we search for “software developer” as opposed
to “code review” jobs on Naukri.com’, the website positioning
itself as “India’s No. 1 Job Site”, and determine the expected
salary. We observe that “code review” jobs can be expected
to pay ca. 1.4 times more than “software developer” jobs.

Rather than code reviews, one might consider commit rights
as an indication of a career stage. Indeed, GitHub contributors
can submit changes either via pull requests subject to review
and approval, or by directly committing to the repository. The
latter right is granted to the trusted developers only. However,
recent studies show that even some developers having commit
rights prefer to submit pull requests as means of ensuring
quality of the submitted change through the associated review
and approval mechanism [15]. This preference undermines the
interpretation of the direct commits or pull request submissions
as an indication of a career advancement or lack thereof.

As opposed to the commit rights there is no reason for the
core reviewers not to use their review rights. To validate this
assumption we consult the record activity overview of Russel
Bryant, member of the Board of Directors at OpenStack
Foundation. On June 21, 2017 this overview listed 2,458 con-
tributors that have performed a review at some point, and 1,765
of them have performed at least one review in the last 180
days. Russel Bryant has explicitly marked 329 contributors as
core reviewers; among them 317 (96%) exercise the associated
right of approving/rejecting changes. Therefore, we believe
that the reviewing rights are a more trustworthy indication of
a career phase than the commit rights.

III. RESEARCH METHOD

To gain understanding of the career paths of software devel-
opers we focus on the code reviewing activities and conduct
an exploratory case study [16] of the OpenStack contributors.
OpenStack can be seen as a “paradigmatic” case [17] of a
modern multi-company Open Source Software project [18],
[19], involving over 500 companies. The data are extracted
from the MySQL dumps acquired from the Bitergia OpenStack
dashboard’ at September 1, 2016.

1) Identifying contributors: The MySQL dump contains
two databases recording information about the contributors
committing and reviewing activities, respectively. Activities
are recorded per account, i.e., activities of a contributor
using different mail addresses are kept separate. Moreover,
accounts in the commit activity database are different from
the accounts in the reviewing activity database. To get insights
in the activities of the individual contributors, Bitergia has

“https://about.gitlab.com/jobs/developer/
Shttps://www.naukri.com/
Shttp://russellbryant.net/openstack-stats/all-reviewers- 180.txt
7http://activity.openstack.org/dash/browser/data_sources.html

Release Date Release Date Release Date
Austin 2010-10-21 | Folsom 2012-09-27 | Juno 2014-10-16
Cactus 2011-04-15 | Grizzly 2013-04-04 | Kilo 2015-04-30

Diablo 2011-09-22
Essex 2012-04-05

TABLE I: OpenStack release cycle.

Havana 2013-10-17
Icehouse2014-04-17

Liberty 2015-10-15
Mitaka 2016-04-07

manually linked together accounts suspected to belong to the
same person; members of the OpenStack Foundation verified
correctness of the linkage. However, as this linkage process
is manual, it is inherently incomplete. Therefore, we further
link accounts if the associated mail addresses are identical. We
opt for this conservative solution rather than more advanced
techniques proposed in the literature [20], [21], [22] since
the lion’s share of the linkage has been already carried out
manually and verified by the Open Stack foundation.

2) Identifying career stages: During the code review, a
reviewer can cast a vote in favor or against the change
proposed. Five kinds of votes are supported by Gerrit®: -2
(the change should be rejected), -1 (by preference the change
should be rejected unless there is another reviewer that would
like to accept it), O (no opinion), +1 (the change looks right)
and +2 (the change should be integrated). Since any -2 blocks
the change submission and any +2 enables it, only a restricted
group of contributors are allowed to cast -2 and +2 votes.
Hence, we consider three career stages of the OpenStack
contributors: i) developers that commit but do not review, ii)
reviewers that can cast the votes between -1 and 1, and iii)
core reviewers that also can cast -2 and +2. Section II shows
that contributors who can cast a +2/-2 vote, indeed do so.

3) Identifying career paths: To identify the career paths we
identify the career stages of contributors at different periods
of time. We define the “periods of time” based on the release
cycle of OpenStack, i.e., two releases per year approximately
six months apart. Adherence to the release process ensures
that our findings are not disturbed by releases [23]. Table I
summarizes OpenStack releases used to create a partitioning
into periods. Release Bexar (2011-02-03) has been excluded
due to it not adhering to the six-month cycle, causing two
periods of three months between Austin and Bexar and be-
tween Bexar and Cactus. We exclude from consideration those
contributors joining after release Kilo (2015-10-15) since the
period between Kilo and the collection of the data is too short
to be considered indicative of a career path.

4) Identifying full-time contributors: Following Robles et
al. [24] to identify full-time contributors, we require the
contributors to perform at least 9 commits between two subse-
quent releases. While more elaborate techniques, e.g., based on
the working hours, have been proposed in the literature [25],
Robles et al. [24] have introduced and validated their approach
on the OpenStack data, and therefore we adhere to it.

5) Statistical analysis: To compare activity of the contribu-
tors before and after they become core reviewers we compare
distributions of the number of commits and the number of

8https://gerrit-review.googlesource.com/Documentation/config-labels.html

32

Core
Reviewer
(227/264)

2

13 (5%)

214 (46%)

Developer
(450/1157)

Reviewer
(195/466)

100 (21%)

740 (64%)

Developer
(379/2280)

Reviewer
(2433/6054)

Core
Reviewer
(372/571)

95 (17%)

1974 (87%)

3542 (59%)

Fig. 1: Full-time (upper) and non-full-time (lower) contribu-
tors. Contributors are only considered once (even if performing
the same transition several times).

reviews contributed per period. We consider six different
periods: two periods prior to the contributor becoming a core
reviewer, the transition period an three periods after it.
To compare multiple distributions we opt for the T-
procedure [26]. T is robust against unequal population vari-
ances, respects transitivity, does not suffer form well-known
problems of two-steps approaches [27] (such as ANOVA
followed by pairwise t¢-tests or Kruskal-Wallis followed by
pairwise Mann-Whitney tests), and has been successfully
applied in empirical software engineering [28], [29], [30]. We
use the Tukey contrasts to compare all distributions pairwise.
To summarize the comparison results we use T-graphs [7]
illustrated in Fig. 3. The T-graph in Fig. 3a indicates that the
distribution represented by the node 0 is “greater” (shifted to
the right) compared to the distribution represented by the node
-1, and also compared to the distribution represented by the
node -2. However, T could not establish that the distribution
represented by the node 0 is shifted to the right or to the left
compared to the distribution represented by the node 1.

IV. RESULTS
A. From Developers to Core Reviewers and back

Fig. 1 and Fig. 2 summarize the career paths of the full-
time (upper) and non-full-time (lower) contributors. The size
of a circle and the denominator in the fraction in the circle
represent the total number of contributors that have ever
belonged to the corresponding class. Fig. 1 represents every
contributor only once, while in Fig. 2 if a contributor started
as a reviewer, then became a core reviewer, and then again

Developer
(450/1364)

Reviewer
(195/541)

Core
Reviewer
(227/274)

2

13 (5%)

848 (62%)

Developer
(379/2555)

Reviewer
(2433/6707)

125 (21%)

Core
Reviewer
(372/596)

99 (17%)

2155 (84%)

3830 (57%)

Fig. 2: Career paths of full-time (upper) and non-full-time
(lower) contributors. Contributors may be considered several
times (one per transition).

became a reviewer, this contributor will be counted twice
when determining the denominator. The numerator inside the
circle shows the size of the class in the most recent period.
Transitions between classes are labeled with the numbers of
contributors belonging to one class in a certain period, and to
a different class in the subsequent period, as well as with the
percentage of all contributors of the “source” class. Similarly
to the circle sizes, in Fig. 2 if contributors takes a transi-
tion several times during their career, they will be counted
twice. Incoming arrows with no source class correspond to
contributors joining the class for the first time (or after a
period of inactivity). Outgoing arrows with no target class
represent those developers becoming inactive. Percentages on
the remaining arrows indicate the outgoing contributors as
percentage of all contributors that have ever been in the class.
A career path is therefore a path in Fig. 2.

By comparing Fig. 1 and Fig. 2 we can observe that “re-
entering” a class is not common. Indeed, 264 full-time core
reviewers and 571 non-full-time core reviewers entered the
core reviewers class 274 and 596 times respectively.

Inspecting Fig. 1 we see that while full-time contributors
do not perform reviewing tasks, non-full-time developers are
more likely to be reviewers. We conjecture that some of those
non-full-time contributors are not formally employed by the
OpenStack companies: indeed, everybody can register and
become a reviewer to support a feature they like. Compared to
full-time contributors, significantly higher share of non-full-
time contributors of the same class leave OpenStack. Both
for full-time and for the non-full-time developers migration

from or to the developers class is very limited, suggesting
that if contributors do not start as reviewers they are unlikely
to become reviewers later on. In both cases, there is more sub-
stantial migration between the reviewer and the core reviewer
classes. However, also here substantial differences emerge be-
tween full-time and non-full-time contributors. Indeed, while
ca. 38% of the non-full-time core reviewers stop being a core
reviewer, only ca. 18% of the full-time core reviewers do so.

B. Easy Come, Easy Go

We start by investigating how fast one can become a core
reviewer. Among 835 contributors that have been core review-
ers at least once, 207 have became core reviewers immediately
after a period of inactivity and another 261 became core
reviewers after contributing for one period. 56% of the core
reviewers thus become core reviewers in one period or less.

Focusing on the contributors that stop being core reviewers,
the largest groups in Fig. 1 are non-full-time contributors that
become regular reviewers and non-full-time contributors that
become inactive. For both subgroups in more than 50% of
the cases the decision to leave occurred after two periods or
less, i.e., one year or less. We do not observe statistical differ-
ences between the durations of engagement (Mann-Whitney
p > 0.05). Comparing full-time and non-full-time leavers of
the core reviewers class, we observe that while as mentioned
above 50% of the non-full-time contributors are no longer core
reviewers after two periods, for the full-time contributors the
50% threshold is reached after three periods. However, the
differences are not significant (Mann-Whitney p > 0.05).

C. Before and After Becoming Core Reviewer

In this section we focus on the differences in contributors’
activity before and after becoming core reviewers. The cor-
responding T-graphs are summarized in Fig. 3. Time periods
before the contributor becomes a core reviewer are denoted -2
and -1, the contributor becomes a core reviewer during period
0, the subsequent periods are denoted 1, 2 and 3.

Both for the full-time and for the non-full-time contributors
the number of reviews contributed increases once the contrib-
utor becomes a core reviewer (Fig. 3a and 3b, respectively).
No such uniformity can be observed for commits: while
the number of commits authored by full-time contributors is
higher once they became core reviewers (Fig. 3c, except for the
number of commits carried out three periods after becoming
the code reviewer) no such conclusion holds for non-full-time
contributors (Fig. 3d). In all the four cases the transition period
(0 in Fig. 3) has a highest level of activity.

V. DISCUSSION
A. Career Path Hypotheses

Based on the case of OpenStack, we formulate the following
hypotheses pertaining to career paths of contributors in modern
industrial open source projects. Investigating those hypotheses
should be a subject of a follow-up study.

H1 (cf. Section IV-A). Developers and (core) reviewers are
different sub-populations within the contributors community

and the movement between the sub-populations is rare. Move-
ment between reviewers and core reviewers is more frequent.

H2a (cf. Section IV-B). The turnover of the core reviewers is
high and occurs relatively rapidly. We would like to investigate
whether this happens together with a change of affiliation or
role in the same company.

H2b (cf. Section IV-B). Companies are interested in having
core reviewers among their (full-time) staff and encourage the
employees to obtain such a status. Indeed, the percentage of
the full-time contributors progressing from the developer to
the reviewer and further to the core reviewer is much higher
than for the non-full-time contributors.

H3 (cf. Section IV-C). Becoming a core reviewer has a
signaling effect in the community [31]. Indeed, we have found
the highest levels of activity in the transition to become a core
reviewer, so that it is beneficial for a career path to achieve
such a position when looking for an (full-time) employment in
the project. This would imply that core reviewers non-affiliated
to companies will be more frequently hired by a company from
the ecosystem than contributors of other classes.

B. Threats to validity

As any empirical study, validity of our conclusions, i.e., the
hypotheses above, might be threatened by several concerns.
Construct validity depends on correctness of our operational-
ization of the full-time employment and career stages, and
matching aliases corresponding to the same contributor. We
opt for the “nine commits” heuristics [24] as an indication
of full-time contribution since it has been designed and vali-
dated for Open Stack. Career stages might not be completely
reflected by developer activities, however, we believe that
code reviews provide are representative for career stages
(Section II). Besides, the alias matching of Bitergia data had
already satisfied the Open Stack Foundation as foundation
members could contact Bitergia if mistakes were spotted. To
ensure internal validity we have chosen a well-established
statistical machinery [26] that has been successfully applied in
the software engineering context in the past [28], [29], [30].
External validity depends on the completeness and correctness
of the data dump as provided by Bitergia. These data have
been used by Bitergia for the dashboards that are offered
(and reviewed) by the OpenStack Foundation. Validity of the
hypotheses for other modern multi-company Open Source
projects is envisioned as a subject of a follow-up study.

VI. CONCLUSION

Motivated by the well-recognized importance of career
perspectives for software engineers we conduct an exploratory
case study of career paths within the OpenStack community.
We operationalize career stages using the modern core re-
view lens and distinguish between developers (non-reviewers),
reviewers and core reviewers. Based on this case study we
formulate four hypotheses about career paths of contributors
in modern industrial open source projects.

As future work we consider confirming/rejecting the hy-
potheses first on other modern multi-company open source

(a) Reviews, full-time contributors (b) Reviews,
non-full-time
contributors

G &

(c) Commits, full-time
contributors

(d) Commits, non-
full-time contribu-
tors

Fig. 3: Commits and reviews: periods before the contributor becomes a core reviewer are -2 and -1, the contributor becomes
a core reviewer during period 0O, the subsequent periods are 1, 2 and 3.

software projects such as OW2 and Netkit; and next on Open
Source projects with a dominating company (e.g., Eclipse).
In this way we hope to tease out the impact of presence of
multiple competing and collaborating companies within an
open source project on career advancement of the project
contributors. In a complementary line of research we plan
to explore perception of the career stages by the OpenStack
contributors as well as managers of the companies involved.

[1]

[4]

[5]

[6

[}

[7]

[8

[t}

[9

—

[10]

(11]

(12]
[13]
[14]

REFERENCES

S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp, “Motiva-
tion in software engineering: A systematic literature review,” Information
& Software Technology, vol. 50, no. 9-10, pp. 860-878, 2008.

A. C. C. Fran¢a, T. B. Gouveia, P. C. F. Santos, C. A. Santana, and
F. Q. B. da Silva, “Motivation in software engineering: A systematic
review update,” in EASE, April 2011, pp. 154-163.

C.-G. Wu, J. H. Gerlach, and C. E. Young, “An empirical analysis of
open source software developers: Motivations and continuance inten-
tions,” Information & Management, vol. 44, no. 3, pp. 253 — 262, 2007.
J. A. Roberts, I.-H. Hann, and S. A. Slaughter, “Understanding the
motivations, participation, and performance of open source software
developers: A longitudinal study of the apache projects,” Management
Science, vol. 52, no. 7, pp. 984-999, 2006.

C. Jensen and W. Scacchi, “Role migration and advancement processes
in OSSD projects: A comparative case study,” in /CSE, 2007, pp. 364—
374.

C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration
in open source ecosystems,” in FSE. ACM, 2011, pp. 70-80.

B. Vasilescu, A. Serebrenik, M. Goeminne, and T. Mens, “On the
variation and specialisation of workload - A case study of the GNOME
ecosystem community,” Empirical Software Engineering, vol. 19, no. 4,
pp. 955-1008, 2014.

F. Fagerholm, A. S. Guinea, J. Borenstein, and J. Miinch, “Onboarding
in open source projects,” IEEE Software, vol. 31, no. 6, pp. 54-61, 2014.
I. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa, “Overcoming
open source project entry barriers with a portal for newcomers,” in ICSE,
2016, pp. 273-284.

A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies of
Open Source Software development: Apache and Mozilla,” ACM Trans.
Softw. Eng. Methodol., vol. 11, no. 3, pp. 309-346, Jul. 2002.

R. G. Kula, A. E. Carmago Cruz, N. Yoshida, K. Hamasaki, K. Fujiwara,
X. Yang, and H. lida, “Using profiling metrics to categorise peer review
types in the android project,” in ISSRE Workshops, 2012, pp. 146-151.
A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of
modern code review,” in ICSE. 1EEE Press, 2013, pp. 712-721.

F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Confusion detection
in code reviews,” in ICSME, 2017.

N. Fenton and J. Bieman, Software Metrics: A Rigorous and Practical
Approach, 3rd ed. CRC Press, Inc., 2014.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: The integrator’s
perspective,” in ICSE. 1EEE Press, 2015, pp. 358-368.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131-164, 2008.

B. Flyvbjerg, Five Misunderstandings about Case-Study Research.
Sage, 2007.

J. Teixeira, “Understanding coopetition in the Open-Source arena: The
cases of Webkit and OpenStack,” in International Symposium on Open
Collaboration. ACM, 2014, pp. 39.1-39.5.

B. Lin, G. Robles, and A. Serebrenik, “Developer turnover in global, in-
dustrial Open Source projects: Insights from applying survival analysis,”
in ICGSE, 2017, pp. 66-75.

G. Robles and J. M. Gonzélez-Barahona, “Developer identification
methods for integrated data from various sources,” in MSR, 2005, pp.
1-5.

E. Kouters, B. Vasilescu, A. Serebrenik, and M. G. J. van den Brand,
“Who’s who in GNOME: Using LSA to merge software repository
identities,” in ICSM, 2012, pp. 592-595.

I. S. Wiese, J. T. da Silva, I. Steinmacher, C. Treude, and M. A.
Gerosa, “Who is who in the mailing list? comparing six disambiguation
heuristics to identify multiple addresses of a participant,” in ICSME.
IEEE Computer Society, 2016, pp. 345-355.

M. Michlmayr, B. Fitzgerald, and K.-J. Stol, “Why and how should
open source projects adopt time-based releases?” IEEE Software, vol. 32,
no. 2, pp. 55-63, 2015.

G. Robles, J. M. Gonzdlez-Barahona, C. Cervigén, A. Capiluppi, and
D. Izquierdo-Cortazar, “Estimating development effort in free/open
source software projects by mining software repositories: a case study
of OpenStack,” in MSR, 2014, pp. 222-231.

A. Capiluppi and D. Izquierdo-Cortazar, “Effort estimation of FLOSS
projects: A study of the Linux kernel,” Empirical Software Engineering,
vol. 18, no. 1, pp. 60-88, 2013.

F. Konietschke, L. A. Hothorn, and E. Brunner, “Rank-based multiple
test procedures and simultaneous confidence intervals,” Electronic Jour-
nal of Statistics, vol. 6, pp. 738-759, 2012.

K. R. Gabriel, “Simultaneous test procedures—some theory of multiple
comparisons,” The Annals Mathematical Statistics, vol. 40, no. 1, pp.
224-250, 1969.

B. Vasilescu, A. Capiluppi, and A. Serebrenik, “Gender, representation
and online participation: A quantitative study,” Interacting with Com-
puters, vol. 26, no. 5, pp. 488-511, 2014.

Y. Yu, H. Wang, G. Yin, and T. Wang, “Reviewer recommendation for
pull-requests in GitHub: What can we learn from code review and bug
assignment?” Inf. & Softw. Technology, vol. 74, pp. 204-218, 2016.

A. Swidan, A. Serebrenik, and F. Hermans, “How do Scratch program-
mers name variables and procedures?” in SCAM, 2017.

B. Vasilescu, A. Serebrenik, P. T. Devanbu, and V. Filkov, “How social
Q&A sites are changing knowledge sharing in Open Source Software
communities,” in CSCW, 2014, pp. 342-354.

